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Gravitational redshift

in quantum-clock interferometry



Relativistic effects
in macroscopically delocalized

quantum superpositions



• Macroscopically delocalized quantum superpositions:
       coherent superposition of atomic wave packets

• Differences in dynamics of superposition components
          entirely Newtonian

• Same relativistic effects on superposition components
     (e.g. atomic clocks)

★ Goal (QM + GR):  experiment with general relativistic 
effects acting non-trivially on the quantum superposition

Wavepacket separation 

90 ħk beam splitters, sequential two-photon 
Bragg transitions 

Interferometer duration 2T = 2.08 s  

TK, P. Asenbaum, C. Overstreet, C. Donnelly, S. Dickerson, A. Sugarbaker,  
J. Hogan, and M. Kasevich, Nature 2015 

Kovachy et al., Nature (2015)



Proper time as which-way information

• Quantum superposition of clocks (COM + internal state)
 experiencing different proper times

•              reduced visibility of interference signal

Zych et al., Nat. Comm. (2011)
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Key elements
of quantum-clock interferometry



Quantum-clock model

• Quantum overlap:

• Initialization pulse:

• Evolution:
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• Comparison of independent clocks  (after read-out pulse):

• Instead of independent clocks we pursue a quantum 
superposition at different heights.
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• Theoretical description of the clock

‣ two-level atom  (internal state):

‣ classical action for COM motion:

Ĥ = Ĥ1 ⌦ |gihg| + Ĥ2 ⌦ |eihe|
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• Wave-packet evolution in terms of

‣ central trajectory  (satisfies classical e.o.m.)

‣ centered wave packet

• Fermi-Walker frame associated with the central trajectory

‣ valid for freely falling wave packet    (geodesic)

‣ but also with external forces /guiding potential    (accel. trajectory)

‣ approximately non-relativistic dynamics for centered wave packet

Atom interferometry in curved spacetime
(including relativistic effects)
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• Metric in Fermi-Walker coordinates:

• Expanding the action for the centered wave packet:
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• Hamiltonian:

• Wave-packet evolution:

‣ propagation phase

‣ centered wave packet
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Ĥn = mnc
2 + Vn(⌧c,0) + Ĥ(n)
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• Full interferometer  (including laser kicks):

• Detection probability at the exit port(s):

• Phase shift:
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Major challenges
in quantum-clock interferometry



Insensitivity to gravitational redshift  (in a uniform field)

• Consider a freely falling frame:

• Proper-time difference between the two interferometer 
branches independent of

• (small dependence due to pulse timing suppressed by                        )

g
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Ramsey-Bordé
interferometer
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Differential recoil

• Different recoil velocities different central trajectories

• Implied changes of proper-time difference are comparable
to signal of interest.
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Small visibility changes

• Reduced interference visibility due to deceasing quantum overlap 
of clock states:

• Small effect for feasible parameter range:

• Extremely difficult to measure such small changes of visibility,
which are masked by other effects leading also to loss of visibility.
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Doubly differential scheme
for gravitational-redshift measurement



• Detection probability at first exit port  (independent of internal state):

• Phase-shift difference directly related to visibility reduction.

• Precise differential phase-shift measurement involving state-selective 
detection is much more viable.

•  ( immune to spurious loss of contrast + common-mode rejection of phase noise)

Differential phase-shift measurement

visibility
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• Level structure for group-II-type atoms (e.g. Sr, Yb) employed in 
optical atomic clocks:

• Two-photon process resonantly connecting the two clock states.

• Equal-frequency counter-propagating laser beams in lab frame:

• constant effective phase simultaneity hypersurfaces in lab frame

Two-photon pulse for clock initialization

E. A. ALDEN, K. R. MOORE, AND A. E. LEANHARDT PHYSICAL REVIEW A 90, 012523 (2014)
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FIG. 1. (Color online) Two-photon clock level structure. This is
the prototypical, optical clock-level structure with a 3P0 clock state.
The electric field of one photon and the magnetic field of a second
degenerate photon directly couple the 1S0 ground state to the clock
state by coupling to the intermediate 3P1 level with some detuning !.

A sample detection channel for a hot clock is the 3P0
E1←→ 3S1, E1

allowed transition.

require optimization are vapor cell temperature T and laser
beam radius ω0. The effective rate of atoms excited to the 3P0
level is given by

Ṅ3P0 = P3P0 (T ,ω0)Ṅtot(T ,ω0), (3)

where P3P0 is the probability a single atom in the excitation
region has been excited to the 3P0 level and Ṅtot is the rate of
atoms flowing through the interrogation region. In a thermal
environment the interrogation time of an atom by the excitation
laser is always much less than the time required to coherently
transfer the full population to the excited state; there is no
risk of Rabi flopping. An increase in laser power is therefore
always beneficial because it increases the two-photon Rabi
frequency and by extension the probability of excitation to the
3P0 level in a time-limited measurement. The temperature and
laser beam radius contribution to overall rates and stability
will be explained in Sec. III B.

A. Two-photon Rabi frequency

For the purposes of this paper, we will consider a system
where the atom is excited with a single laser (monochromatic)
or pair of lasers (bichromatic) whose frequencies are far

Lo
T 

2ω0

2zR

FIG. 2. (Color online) Hot optical clock. This diagram of a
monochromatic laser in a vapor cell depicts the experimental system.
The detection length Lo is the detection optics aperture, and the laser
beam radius is ω0. The Rayleigh range zR that limits the interrogation
region is shown in this graphic. The area enclosed by a box is the
Rayleigh-limited interrogation region of the atoms.

off resonance from the allowed E1 or M1 transitions. To
satisfy the selection rules of the transition, the electric field
vector of one excitation photon must be parallel to the
magnetic field vector of the other excitation photon. This
alignment can be realized utilizing either the Lin ⊥ Lin
or σ+/σ− polarization scheme described by Dalibard and
Cohen-Tannoudji [9]. These schemes satisfy the selection rules
and ensure that any clock excitation is the product of excitation
from counterpropagating beams and thus reduces or eliminates
first-order Doppler broadening.

Our proposed system satisfies the constraints of adiabatic
elimination [10,11], specifically ! % $1,$2,δ, where $i is
the two-level Rabi frequency of each E1 and M1 transition,
δ is the two-photon detuning from the unperturbed transition
frequency, and ! is the minimum detuning of an excitation
photon’s energy from the intermediate 3P1 level (see Fig. 1).
In this limit, the two-photon Rabi frequency for an atom
addressed by a pair of photons, where δ is chosen to offset
the light shift, is given by [12]

$R2γ = 2I

!2c2ε0

〈3P0||µ||3P1〉M1〈3P1||D||1S0〉E1

!
, (4)

where I is the peak intensity of the excitation laser,
〈3P0||µ||3P1〉M1 is the reduced matrix element for the magnetic
dipole (M1) transition, and 〈3P1||D||1S0〉E1 is the reduced
matrix element for the electric dipole (E1) transition.

The E1-M1 coupling will also occur via the 1P1 inter-
mediate level. In the case of Hg it will constitute as much
as 37% of the Rabi frequency, where its contribution is
maximum for the degenerate excitation scheme. We omit this
favorable contribution from the rate and stability simulations
for simplicity, but experiments can anticipate an enhancement.
Estimated and observed electric and magnetic dipole matrix
elements are shown for the group-II-type atoms in Table I.
We also provide the estimated two-photon Rabi frequency for
the degenerate photon case with the experimental parameters
defined in Table II.

TABLE I. Reduced matrix elements for the electric dipole
〈nsnp3P 1||D||ns2 1S0〉 intercombination transition (E1) and the mag-
netic dipole 〈nsnp3P 0||µ||nsnp3P1〉 transition (M1) for each candi-
date element. Matrix element values are in a.u. For monochromatic
excitation, the two-photon Rabi frequency $R2γ is shown for unit
intensity (1 W/m2). A prototypical intensity for this scheme is
6 × 106 W/m2.

Atom n E1/ea0 M1/µ
B

$R2γ /I (Hz)

Ra 7 1.2 [13]
√

2 [14] 7.1 × 10−5

Ba 6 0.45 [15]
√

2 [14] 3 × 10−5

Yb 6 0.54 [16]
√

2 [16] 2.5 × 10−5

Hg 6 0.44 [17]
√

2 [14] 9.3 × 10−6

Sr 5 0.15 [18]
√

2 [14] 8.8 × 10−6

Ca 4 0.036 [18]
√

2 [14] 2 × 10−6

Mg 3 0.0057 [18]
√

2 [17] 2.2 × 10−7

Be 2 0.00024 [17]
√

2 [14] 9.3 × 10−9
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• Compare differential phase-shift measurements for different 
initialization times:

Laboratory frame
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• Relativity of simultaneity:

Freely falling frame
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Challenges addressed

• Differential phase-shift measurement precise measurement, 
common-mode rejection (of noise & systematics)

• Comparing measurements with different initialization times
 sensitive to gravitational redshift + further immunity

• Almost no recoil from initialization pulse,
small residual recoil with no impact on gravitational redshift 
measurement,

• effect of differential recoil from second pair of Bragg pulses 
cancels out in doubly differential measurement.



• Residual recoil with no influence on the phase-shift for the 
excited state:















Feasibility and extensions



• 10-m atomic fountains operating with Sr, Yb 
in Stanford & Hannover respectively.

• More than of free evolution time.

• Doubly differential phase shift of for 

• Resolvable in a single shot for atomic clouds 
with atoms  (shot-noise limited)

• More compact set-ups possible with guided
or hybrid interferometry  (less mature).

Feasible implementation

HITec (Hannover)
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Conclusion



• Measurement of relativistic effects in macroscopically delocalized 
quantum superpositions with quantum-clock interferometry.

• Important challenges in quantum-clock interferometry and its 
application to gravitational-redshift measurement.

• Promising doubly differential scheme that overcomes them.

• Feasible implementation in facilities soon to become operational.

• Applicable also to more compact set-ups based on guided or hybrid 
interferometry.



• Collaboration on the experimental realization of the proposed 
scheme with Leibniz University Hanover :

• Related theoretical work at Ulm University :

Sina Loriani Dennis Schlippert Ernst Rasel
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• Bragg diffraction at the magic wavelength same Rabi frequency 
for both internal states.

•   BUT high laser power required due to large detuning.

• Alternative diffraction mechanism based on simultaneous pair of  
single-photon transitions.

‣ Applicable to fermionic isotopes such as and .

‣ Required lasers already available in (some of) those facilities.

Diffraction of atoms in internal-state superpositions

87Sr 171Yb



• Sequence of simultaneous pairs of pulses:

• Net result:

‣ internal state unchanged

‣ momentum transfer:  twice single-photon momentum

‣ equal-amplitude superposition:  undiffracted + diffracted wave packet
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• Sequence of simultaneous pairs of pulses:

• Same ac Stark shifts for both internal states
 contributions to differential phase shift cancel out.

• Any light shifts cancel out in the doubly differential measurement
      (provided that the laser intensities are stable).
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• In principle, guided interferometry can be sensitive to the 
gravitational redshift:

• Nevertheless, the doubly differential measurement scheme 
has many advantages.

Extension to guided interferometry
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• Intermediate stage with atoms held in an optical lattice, 
where they undergo Bloch oscillations:

• Similarly to pure light-pulse atom interferometers, they are 
insensitive to the gravitational redshift.

Extension to hybrid interferometers











Bloch oscillations
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• Intermediate stage with atoms held in an optical lattice, 
where they undergo Bloch oscillations:

• The doubly differential scheme can also be employed for 
measuring the gravitational redshift.

Extension to hybrid interferometers











Bloch oscillations



Other aspects



























Proper-time difference in open interferometers















Proper-time difference in open interferometers















Proper-time difference and gravity gradients


