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Relativistic effects
in macroscopically delocalized
quantum superpositions




® Macroscopically

coherent superposition of atomic wave packets

Kovachy et al., Nature (2015)

|

54 cm

® Differences in dynamics of superposition components
—> entirely

° on superposition components

(e.g. atomic clocks)

* Goal (QM + GR): experiment with
effects acting non-trivially on the



Proper time as which-way information

e Quantum of (COM + internal state)
experiencing
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—> reduced of interference signal

Zych et al., Nat. Comm. (201 1)
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Key elements
of quantum-clock interferometry




Quantum-clock model

® |nitialization pulse:
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® Comparison of clocks (after read-out pulse):
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® |nstead of independent clocks we pursue a
at different heights.
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of the clock

» two-level atom (internal state):

mip = Mg
H = H ®ls)(g + Ha o le)el s = my + Am
Am = AE/c?
» classical action for COM motion:
Sy |z ()] = —mnCQ/dT = —mnc/d)\ \/—gw/cilx—;cilx; (n=1,2)
~ free fall

Sy |z ()] = —mnCQ/dT—/dT Vi () “—_ including

external forces



Atom interferometry in curved spacetime
(including relativistic effects)

in terms of
central trajectory (satisfies classical e.o.m.) XH(N)
centered wave packet v (7))

associated with the
valid for freely falling wave packet (geodesic)
but also with external forces/guiding potential (accel. trajectory)

approximately dynamics for centered wave packet

Ap/m < ¢ Az <4 s _

curvature radius



® Metricin coordinates: X*(1e) = (¢7c,0)

ds® = guvdxtdz” = goo dr? + 2 goi cdr, dz’ + gij da'da’

goo = —(1+6;5 a’(7e) 27 /¢ )2 — Roio;(7e,0) 2'a? + O(|x[*)

9 |
Jo; = _gROjik(TmO) xja:k’ + O(|X|3)
1
Gij = 035 — gRikjl(Tcao) 2"z + O(|x]?)
® Expanding the for the
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® H, = m,c? + V,(7.,0) + H™

V() = 00Vt

T (V(”) (7e) — mnr(fc)) %

N | —

® Wave-packet [ (1e)) = 'S/ M (7))
» propagation phase
S, = —/72 dt. (mn02 + Vn(TC,O)>

» centered wave packet

d ~
ih [ () = He [0 (7))



o Full (including laser kicks):

propagation + laser phases

/\

(ew“ + ei‘bb) )

N | —

: | |¢hr) =

va

® Detection probability at the exit port(s):  (yr1|1r) = %(1 + cos d¢)

~+

® Phase shift: 09 = Qb — Pa + 0Psep



Major challenges
in quantum-clock interferometry




Insensitivity to gravitational redshift (in a uniform field)

® Consider a frame:
A
Ramsey-Bordé
interferometer
/ X
|
a
]
» T,
® between the two interferometer
branches — of g

(small dependence due to pulse timing suppressed by (v,../c) ~ 1071?)
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Differential recoil

® Different recoil velocities —> different central trajectories

N

v = Bk /may,

rec

® |mplied of are comparable
to signal of interest.



Small visibility changes

® Reduced due to deceasing
of clock states:

11 AE
(U1¥1) = 5t 5 (P (75)|P(74))| cosdg ‘@(Tb)l@(%» = cos <ﬁ (Tr%))
° for feasible parameter range:
AE/h = wy ~ 21 x 4 x 10> THz
]<q>(n,)|q>(fa)> — cos (% QCAQZ At) ~1-(107%)%)2 Az =1em
At =1s
® Extremely such small changes of visibility,

which are by other effects leading also to loss of visibility.
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Doubly differential scheme
for gravitational-redshift measurement




Differential phase-shift measurement

at first exit port (independent of internal state):

\DI’\IJI \Il(l)’\IJ(l) \11(2)‘\If§2)>)
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visibility
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directly related to reduction.

Precise measurement involving
is much more viable.

(immune to spurious loss of contrast + common-mode rejection of phase noise)



Two-photon pulse for clock initialization

for group-ll-type atoms (e.g. Sr, Yb) employed in

Alden et al., Phys. Rev. A (2014)

resonantly connecting the two

counter-propagating laser beams in lab frame:

constant effective phase —> in lab frame
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Laboratory frame

® Compare differential phase-shift measurements for different
initialization times:

z
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Laboratory frame

® Compare differential phase-shift measurements for different
initialization times:

z li t{
4 | | | |
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Freely falling frame

® Relativity of simultaneity: A7 =~ —v(t) Az/c? = g (t — tap) Az/c?

N

» Tc

(0612 () — 36 (1)) = (66 (1) — 66V (1)) = Az—f (Am, = Ata) = Am g Az (t — ) /B



Challenges addressed

° measurement —> precise measurement,
common-mode rejection (of noise & systematics)

° measurements with
—> sensitive to gravitational redshift + further immunity

® Almost no recoil from initialization pulse,
with on gravitational redshift
measurement,

effect of differential recoil from of
in doubly differential measurement.



® Residual recoil with no influence on the phase-shift for the

excited state:

»




Feasibility and extensions




Feasible implementation
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HiTec (Hannover)

operating with Sr, Yb
in Stanford & Hannover respectively.

More than 2 s of time.

of 1 mrad for

AE/h = wy ~ 21 x 4 x 10* THz
Az =1cm

Atizls

in a single shot for atomic clouds
with N = 10° atoms (shot-noise limited)

More possible with guided
or hybrid interferometry (less mature).



Conclusion




Measurement of in macroscopically
with quantum-clock interferometry.

Important challenges in and its
application to measurement.

Promising that overcomes them.
Feasible in facilities soon to become operational.
Applicable also to set-ups based on guided or hybrid

interferometry.
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Diffraction of atoms in internal-state superpositions

° at the —> same Rabi frequency
for both internal states.

BUT high laser power required due to large detuning.

® Alternative diffraction mechanism based on simultaneous pair of

» Applicable to fermionic isotopes such as ®"Sr and 1" Yb.

» Required lasers already available in (some of) those facilities.



° of simultaneous pairs of pulses:

/2 pulse 7 pulse

° result:

» internal state unchanged

» momentum transfer: twice single-bhoton momentum

» equal-amplitude superposition: undiffracted + diffracted wave packet



of simultaneous pairs of pulses:

/2 pulse 7 pulse

Same for both internal states
—> contributions to differential phase shift cancel out.

Any cancel out in the doubly differential measurement
(provided that the laser intensities are stable).



Extension to guided interferometry

® |n principle, guided interferometry can be to the
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® Nevertheless, the measurement
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Extension to hybrid interferometers

® |[ntermediate stage with atoms held in an
where they undergo

z

A

Bloch oscillations

® Similarly to pure light-pulse atom interferometers, they are
to the

Charriere et al., Phys. Rev.A 85 013639 (2012)

Zhang et al., Phys. Rev.A 94 043608 (2016)



Extension to hybrid interferometers

® |[ntermediate stage with atoms held in an
where they undergo

z

A

Bloch oscillations

® The can also be employed for
measuring the



Other aspects
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Proper-time difference in open interferometers




Proper-time difference in open interferometers
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Proper-time difference and gravity gradients




