

MPQ team:

<u>G. Vishnyakova</u>, R. Holzwarth, A. Matveev, A. Grinin, Th. Udem, Th. W. Hänsch PTB team:

Th. Waterholter, A. Kuhl, S. Koke, G. Grosche

Max Planck Institute of Quantum Optics Physikalisch-Technische Bundesanstalt Menlo Systems GmbH P.N. Lebedev Physical Institute of the Russian Academy of Sciences

ΡВ

ACES Workshop, TU München, October 22nd 2018

Outline

- What we are talking about?
- Applications
- Noise cancellation principle, Experimental Setup
- Results
- Conclusion
- Plans

Also in Japan, USA, China, Australia....

Dark or public fiber

Applications

- Frequency transfer (precision measurements)
- Time transfer
- Clock Comparison
- Gravitational Shift
- Sagnac effect
- Earthquake detection
- Even between parts of setup

[1] S.Droste, PhD Thesis

Stabilization Principle

- $\lambda = 1.5 \,\mu m$, 940 km, 2 fibers
- Attenuation 0.23 dB/km, total attenuation > 225 dB
- Delay 10 ms, bandwidth 50 Hz
- ULE cavity
- «Antiparallel» configuration → Cross-checks!

Thomas Waterholter, Alexander Kuhl, Sebastian Koke, Gesine Grosche

- Locking to upcoming light:
 - ULE drift compensation
 - Reliability of the whole link
- (Locking to Comb which is locked to Maser or Optical Clock)

Thomas Waterholter, Alexander Kuhl, Sebastian Koke, Gesine Grosche

Experimental Setup: Options

«Giant loop» configuration

Experimental Setup: Options

«Giant loop» configuration

Experimental Setup: Options

«Giant loop» configuration

<complex-block>

May 1, 2014 / Vol. 39, No. 9 / OPTICS LETTERS 2545

Eavesdropping time and frequency: phase noise cancellation along a time-varying path, such as an optical fiber

Gesine Grosche

Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany (gesine.grosche@ptb.de)

Received March 4, 2014; accepted March 8, 2014; posted March 14, 2014 (Doc. ID 207644); published April 17, 2014

Single-mode optical fiber is a highly efficient connecting medium used not only for optical telecommunications but also for the dissemination of ultrastable frequencies or timing signals. Ma *et al.* [Opt. Lett. **19**, 1777 (1994)] described a measurement and control system to deliver the same optical frequency at *two* places, namely the two ends of a fiber, by eliminating the "fiber-induced phase-noise modulation, which corrupts high-precision frequency-based applications." I present a simple detection and control scheme to deliver the same optical frequency at *many* places anywhere along a transmission path, or in its vicinity, with a relative instability of 1 part in 10¹⁰. The same idea applies to radio frequency and timing signals. This considerably simplifies future efforts to make precise timing or frequency signals available to many users, as required in some large-scale science experiments. © 2014 Optical Society of America

OCIS codes: (060.2360) Fiber optics links and subsystems; (060.2840) Heterodyne; (120.3940) Metrology. http://dx.doi.org/10.1364/OL39.002545

Stimulated Brillouin scattering

Fiber Brillouin amplification

Fiber Brillouin Amplifiers

- Bandwidth ~20 MHz
- Frequency lock is required → difficult!
- Polarization matters → difficult!
- 2 amplifiers in labs + 4 along the link
- Remote control from PTB

Erbium Doped Fiber Amplifiers

- Bandwidth ~13 GHz
- Bidirectional
- 4 units in labs + 1 along each link (totally 2)
- Remote control from MPQ

Amplifiers

Locking and counting of beatsignals

Validation criteria

MPQ-PTB link

Free-running link

Doppler Shift

 $\Delta v \sim \pm 10 \text{ Hz}$

[1] S.Droste, PhD Thesis

980 km MPQ-PTB and PTB-MPQ link

- White phase and f^1
- Allan Deviation: stability
- Accuracy
 1.22 x 10⁻¹⁹

Phase Noise Power Spectral Density

[1] S.Droste, PhD Thesis

Scaling

[1] S.Droste, PhD Thesis

10th of September - 20th of October 2018

Conclusion

- Optical fiber links
- New MPQ-PTB-MPQ link is working!

Plans

- Analyse data from Campaign, continue if necessary
- Optimizations and improvements

- Sagnac effect
- Time transfer

Plans

- Analyse data from Campaign, continue if necessary
- Optimizations and improvements

- Sagnac effect
- Time transfer

Thank you for your attention!

 Allan Deviation: stability

Accuracy

1.22 x 10⁻¹⁹

Types of noises. Power spectral density

→ b)

a)

 $t \longrightarrow$

c)

Measure. Allan Deviation

Allan deviation
$$\sigma_{y}(\tau) = \sqrt{\frac{1}{2} \left\langle (\overline{y}_{i+1} - \overline{y}_{i})^{2} \right\rangle}$$

$$y(t) \equiv \frac{\Delta \nu(t)}{\nu_0}$$

1

Overlapping Allan deviation

Π- and Λ-counters. Relationships between different Allan deviations

Inloop and Remote signals

Inloop and Remote signals

$$\varphi_{inloop}(t) = \varphi_{fiber,RT}(t) - (\phi_c(t) + \phi_c(t - 2\tau_{delay})) = 0.$$

Delay-unsuppressed noise

$$S_{remote}(f) = \frac{1}{3} (f \tau_{delay})^2 S_{fiber}(f).$$

Results

Even for 5 m fiber:

White phase noise

5 Hz mechanical perturbations

Even for 5 m fiber:

Allan Deviation

Phase Noise Power Spectral Density

- Attenuation 0.23 dB/km
- Total attenuation > 420 dB
- ULE cavity
- Delay 18 ms
- Bandwidth 27 Hz

[1] S.Droste, PhD Thesis

1840 km MPQ-PTB-MPQ link. Stability

1840 km MPQ-PTB-MPQ link. Accuracy

 $(-0.1 \pm 2.6) \cdot 10^{-19}$

[1] S.Droste, PhD Thesis

Extended noise analysis

Noise Type	$S_y(f)$	$S_{\phi}(f)$	$\sigma_y^2(au)$	$\mod \sigma_y^2(au)$
Random walk freq.	$h_{-2}f^{-2}$	$\nu_0^2 h_{-2} f^{-4}$	$rac{2\pi^2h_{-2}}{3} au$	$\frac{11\pi^2h_{-2}}{20}\tau$
Flicker frequency	$h_{-1}f^{-1}$	$\nu_0^2 h_{-1} f^{-3}$	$2\ln(2)h_{-1}$	$2\ln(1.59)h_{-1}$
White frequency	$h_0 f^0$	$\nu_0^2 h_0 f^{-2}$	$rac{h_0}{2} au^{-1}$	$rac{h_0}{4} au^{-1}$
Flicker phase	$h_1 f^1$	$\nu_0^2 h_1 f^{-1}$	$\frac{(3.12+3\ln(\pi f_h\tau))h_1}{4\pi^2}\tau^{-2}$	$rac{3\ln(9.48)h_1}{8\pi^2} au^{-2}$
White phase	$h_2 f^2$	$\nu_0^2 h_2 f^0$	$\tfrac{3f_hh_2}{4\pi^2}\tau^{-2}$	$\tfrac{3h_2}{8\pi^2}\tau^{-3}$
f^1 -noise	$h_3 f^3$	$ u_0^2 h_3 f^1$	$rac{3f_{h}^{2}h_{3}}{8\pi^{2}} au^{-2}$	$\frac{(9.64+10\ln(\pi f_h\tau))h_3}{16\pi^4}\tau^{-4}$
f^2 -noise	$h_4 f^4$	$ u_0^2 h_4 f^2$	$rac{f_{h}^{3}h_{4}}{4\pi^{2}} au^{-2}$	$rac{10 f_h h_4}{16 \pi^4} au^{-4}$
f^3 -noise	$h_5 f^5$	$ u_0^2 h_5 f^3$	$rac{3f_{h}^{4}h_{5}}{16\pi^{2}} au^{-2}$	$rac{10 f_h^2 h_5}{32} au^{-4}$
f^4 -noise	$h_6 f^6$	$ u_0^2 h_6 f^4$	$rac{3f_{h}^{5}h_{6}}{20\pi^{2}} au^{-2}$	$rac{10 f_h^3 h_6}{48 \pi^4} au^{-4}$

Stimulated Brillouin scattering

- Only $\Theta = \Pi$: backwards
- Two waves: ω - Ω and ω + Ω
- Ω ~ 11 GHz
- About 4 mW

Stimulated Brillouin scattering

- Only $\Theta = \Pi$: backwards
- Two waves: ω - Ω and ω + Ω
- Ω ~ 11 GHz
- About 4 mW

920 km MPQ-PTB

Criterium	Threshold
Difference of redundantly counted $f_{Beat,F1}$ at PTB	< 0.2 Hz
Difference of redundantly counted $f_{Beat,F2}$ at MPQ	< 0.2 Hz
Difference of both $f_{Beat,F1}$ and its nominal frequency at PTB	< 1 Hz
Difference of both $f_{Beat,F2}$ and its nominal frequency at MPQ	< 1 Hz

[1] S.Droste, PhD Thesis

Noise types

Тип шума	Происхождение	S_{ϕ}	S_y	σ_y	Mod σ_y
Случайные уходы частоты	Окружающая среда	$\propto f^{-2}$	$\propto f^{-4}$	$\propto au^{rac{1}{2}}$	$\propto \tau^{\frac{1}{2}}$
Фликкер-шум частоты	Компоненты стандарта частоты	$\propto f^{-1}$	$\propto f^{-3}$	const	const
Белый шум частоты	Дробовой шум, тепловой шум	const	$\propto f^{-2}$	$\propto \tau^{-\frac{1}{2}}$	$\propto \tau^{-\frac{1}{2}}$
Фликкер-шум фазы	Электроника	$\propto f^1$	$\propto f^{-1}$	$\propto \tau^{-1}$	$\propto \tau^{-1}$
Белый шум фазы	Окружающая среда	$\propto f^2$	const	$\propto \tau^{-1}$	$\propto au^{-rac{3}{2}}$

$S_y(f)$	$S_{\phi}(f)$	Type of noise	$\sigma_y^2(au)$
$h_{-2}f^{-2}$	$\nu_0^2 h_{-2} f^{-4}$	Random walk	$(2\pi^2 h_{-2}/3)\tau^{+1}$
$h_{-1}f^{-1}$	$\nu_0^2 h_{-1} f^{-3}$	of frequency noise Flicker frequency noise	$2h_{-1}\ln 2\tau^0$
$h_0 f^0$	$\nu_0^2 h_0 f^{-2}$	White frequency noise	$(h_0/2)\tau^{-1}$
		(Random walk of phase noise)	
$\begin{array}{c} h_1 f \\ h_2 f^2 \end{array}$	$\frac{\nu_0^2 h_1 f^{-1}}{\nu_0^2 h_2 f^0}$	Flicker phase noise White phase noise	$ h_1 [1.038 + 3\ln(2\pi f_h \tau)] / (4\pi^2) \tau^{-2} [3h_2 f_h / (4\pi^2)] \tau^{-2} $

Мар

