First results from a test of Lorentz Invariance with the MICROSCOPE mission

- ACES Workshop 2018 -

Hélène Pihan-Le Bars¹, C. Guerlin^{2,1}, Quentin Bailey³, Geoffrey Mo⁴, Jay Tasson⁴, Peter Wolf¹

1 SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, France 2 LKB, ENS, Université PSL, CNRS, Sorbonne Université, Collége de France, France 3 Embry-Riddle Aeronautical University, Arizona, USA 4 Carleton College, Minnesota, USA

Hélène Pihan-Le Bars

AG Labex First-TF 2018

Toulouse

Space-time symetries

Homogeneous and isotropic space-time

Physical laws are the same:

- $\diamond\,$ whatever you choose as spacetime coordinates $\rightarrow\,$ observer invariance
- $\diamond\,$ whatever boost or orientation changes you realize in a given inertial frame $\rightarrow\,$ particle invariance

Hélène Pihan-Le Bars

AG Labex First-TF 2018

Toulouse

Space-time symetries

Homogeneous and isotropic space-time

Physical laws are the same:

- whatever you choose as spacetime coordinates \rightarrow observer invariance
- whatever boost or orientation changes you realize in a given inertial frame \rightarrow particle invariance

Hélène Pihan-Le Bars

AG Labex First-TF 2018

Toulouse

The Lorentz symmetry group

Local Lorentz Invariance Principle

The results of a non-gravitational experiment is independent of the boost and orientation changes encountered by the free-falling laboratory frame.

C. Will, 1993

Lorentz symmetry in physics

- \diamond General Relativity \rightarrow directly related to space-time geometry
- $\diamond~$ Standard Model \rightarrow affect the space-time in which particles interact

Hélène Pihan-Le Bars

AG Labex First-TF 2018

Toulouse

A D N A B N A B N A B N

Lorentz symmetry in alternative theories

Some theories beyond General Relativity and Standard Model consider the possibility of Lorentz symmetry breaking at high energy (*e.g.* some string theories, Horava gravity...)

AG Labex First-TF 2018

Toulouse

The Standard Model Extension

- Effective theory parametrizing all possible particle Lorentz violations
- Build from SM fields (fermions, photon, quark... sectors)
- Include violations arising from spacetime metric and curvature through a gravitational sector
- Amplitude of violations quantified by SME coefficients corresponding to components of SME tensors

Hélène Pihan-Le Bars	AG Labex First-TF 2018	Toulouse	5 / 21

The Standard Model Extension

- SME tensors are fixed in space and time and define a "preferred orientation" of space-time
- <u>CONVENTION</u>: SME coefficients expressed in Sun Centered Frame (inertiel over thousand of years)

Kostelecky et al., PRD 51, 1995, Kostelecky et al., PRD 58, 1998

How to test Lorentz invariance

Requirements

- · Experiment with a preferred orientation
- Experiment with long term stability

Signals: shape and dependance

- Search of periodic signals related to the experiment orientation changes with respect to SME background fields
 - spatial orientation
 - boost $\beta = v/c$

Toulouse

Goal

Test of universality of free fall (UFF), with a precision of 10^{-15} on the Eötvös parameter δ .

$$\delta(A,B) \sim rac{m_{g,1}}{m_{i,1}} - rac{m_{g,2}}{m_{i,2}}$$

lélène Pihan-Le Bars	AG Labex First-TF 2018	Toulouse	8 / 21	
----------------------	------------------------	----------	--------	--

・ロト ・聞 ト ・ ヨト ・ ヨト

Instrument and measurements

Hélène

- Twin electrostatic accelerometer T-SAGE
- Measures the differential acceleration of two test masses (Ti/Pt) ou (Pt/Pt)

Pihan-Le Bars	AG Labex First-TF 2018	Toulouse	9 / 21	
---------------	------------------------	----------	--------	--

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

Satellite

Hélène F

- Micro-satellite provided by CNES
- Sun-synchronous circular orbit (altitude \sim 700 km)
- Launched in Avril 2016, de-orbiting ongoing

han-Le Bars	AG Labex First-TF 2018	Toulouse	10 / 21	
-------------	------------------------	----------	---------	--

First results

Hélène Pil

Obtained by the analysis of 120 orbits:

$$\delta$$
 = [-1 ± 9 (stat) ± 9 (syst)] $imes 10^{-15}$

Touboul et al., PRL, 119, 231101 (2017)

<ロト < 回 > < 回 > < 回 > < 回 > <</p>

an-Le Bars	AG Labex First-TF 2018	Toulouse	11 / 21	
------------	------------------------	----------	---------	--

Relation between WEP and SME test

- Test in the sector of couplings between matter and gravitation. Constraints on $\alpha (\bar{a}_{eff})_{u}^{w}$ components.
- $\alpha (\bar{a}_{eff})^w_\mu$ quantifies a modification massive bodies trajectories depending on their respective composition.

Hélène Pihan-Le Bars	AG Labex First-TF 2018	Toulouse	12	/ 21	
		• • • • • • • • • •	e> k ≣>	æ	୬୯୯

What sort of signals can we expect?

- Variation of the relative acceleration depending on the orientation of the sensitive axis
- Annual modulation due to the motion of the satellite with respect to the Sun.

Hélène Pihan-Le Bars	AG Labex First-TF 2018	Toulouse	13 / 21
Hélène Pihan-Le Bars	AG Labex First-TF 2018	Toulouse	13 / 21
		Toulouse	10/21

Data used for the analysis

Data used for the analysis

Data used for the analysis

Tita

© ONERA

Titanum

Platinum

Analysis method: Least-squares Monte Carlo (LSMC) method

Hélène Pihan-Le Bars

AG Labex First-TF 2018

Toulouse

Analysis method: Least-squares Monte Carlo (LSMC) method

Hélène Pihan-Le Bars

AG Labex First-TF 2018

Toulouse

Validation of the method

LSMC vs optimal General Least-squares (GLS)

- Similated test-data (1000 data points) with realistic noise
- · LSMC performances ware about a factor 1.4 worse than GLS

WEP analysis with LSMC vs *Touboul et al., PRL, 119, 231101 (2017)*

- LSMC leads to conservative estimation of parameters bounds
- Overall factor 2 between LSMC and the analysis realized in Touboul2017

Paramotor	Value and uncertainties		
Farameter	This analysis	s Touboul 2017	
δ	$(-1.3\pm2.2\pm2.2) imes10^{-14}$	$(-0.1\pm0.9\pm0.9) imes10^{-14}$	_

Room for improvement...

Hélène Pihan-Le Bars	AG Labex First-TF 2018	

Résults of the SME combined analysis

$$\alpha(a_{\rm eff}^{\rm (d)})_{\mu} = A \ \alpha(a_{\rm eff}^{\rm (n)})_{\mu} + B \ \alpha(a_{\rm eff}^{\rm (e+p)})_{\mu}$$

with $A = 0.47 \text{ GeV}^{-1}$ and $B = 0.29 \text{ GeV}^{-1}$

Parameters	Value and uncertainties	LInit	Maxi	mal sensiti	vities	LInit
1 arameters	value and uncertainties		е	р	n	
$\alpha(a_{\rm eff}^{\rm (d)})_T$	$(0.4 \pm 1.5)(1.1)(1.0) imes 10^{-14}$	-	10 ⁻¹³⁽²⁾	10 ⁻¹³⁽²⁾	10 ⁻¹³⁽²⁾	GeV
$\alpha(a_{\text{eff}}^{(d)})_X$	$(0.6\pm2.2)(1.3)(1.8) imes10^{-10}$	-	10 ⁻⁹⁽³⁾	10 ⁻⁹⁽³⁾	10 ⁻⁹⁽⁴⁾	GeV
$\alpha(a_{\rm eff}^{\rm (d)})_Y$	$(0.3\pm2.5)(1.1)(2.2) imes10^{-8}$	-	10 ⁻⁷⁽²⁾	10 ⁻⁷⁽²⁾	10 ⁻⁷⁽²⁾	GeV
$\alpha(a_{\rm eff}^{\rm (d)})_Z$	$(-0.7\pm5.8)(2.5)(5.2)\times10^{-8}$	_	10 ⁻⁶⁽¹⁾	10 ⁻⁶⁽¹⁾	10 ⁻⁷⁽²⁾	GeV

- Combined analysis of 5 sessions
- No signatures of Lorentz violation detected
- Improvement by 1 to 4 orders of magnitude on the limites of α (ā_{eff})^w_μ

Hélène Pihan-Le Bars

AG Labex First-TF 2018

Toulouse

This work has been carried out in collaboration with the teams of OCA and ONERA involved in the MICROSCOPE mission, in particular:

G. Métris (OCA), J. Bergé (ONERA) and M. Rodrigues (ONERA)

Thank you for your attention

Correlations in SME analysis

