

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin National Metrology Institute

Transportable optical lattice clocks

Christian Lisdat

National Metrology Institute

► Few words about (optical) clocks

Clocks in the lab: examples of experiments

2

Campaigns with our transportable optical lattice clock

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Best clock performances

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

National Metrology Institute

National Metrology Institute

ESA Topical Team Meeting, 22. - 23. 10. 2018, Munich

L=212 mm

FEM optimized cavity shape for minimal vibration sensitivity

expected thermal noise limit at T =123.5 K:

mod $\sigma_{\rm y}$ ≈ 4×10⁻¹⁷

absolute length fluctuations ≈ 8.5×10⁻¹⁸ m

ESA Topical Team Meeting, 22. - 23. 10. 2018, Munich

dominated by mirror coatings!

T. Kessler *et al.*, Nature Phot. **6**, 687 (2012), D. Matei *et al.*, Phys. Rev. Lett. **118**, 263202 (2017)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

proton diameter ≈ 0.85 fm = 850×10^{-18} m

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Fundamental Physics in Space, October 23 - 27, 2017

National Metrology Institute

What can you do?

National Metrology Institute

Sr Clock"

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

C. Grebing et al., Optica **3**, 563 (2016). N. Huntemann et al., PRL **113**, 210802 (2014)

Repeated comparisons – interpretation

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

$$\mathcal{R} = \nu(\mathrm{Yb}^+, E3) / \nu(\mathrm{Sr})$$
$$\frac{\Delta \mathcal{R}}{\mathcal{R}} = -6 \frac{\Delta \alpha}{\alpha}$$

- Yb⁺/Sr frequency ratio magnifies α changes by 6
- Systematic uncertainty of the Sr clocks 2 × 10⁻¹⁷
- No oscillatory behaviour of the frequency ratio
- More than 24 days of data

C. Grebing et al., Optica 3, 563 (2016).N. Huntemann et al., PRL 113, 210802 (2014)

A. Arvanitaki et al., PRD 91, 015015 (2015)
Dy/Dy: K. Van Tilburg et al., PRL 115, 011802 (2015) Rb/Cs: A. Hees et al., PRL **117**, 061301 (2016) Sr(Yb)/Cav: P. Wcislo et al., arXiv:180604762 (2018)

Ch. Lisdat et al., Nature Comms. 7, 12443 (2016)

Clock comparisons – Paris & Braunschweig

Ch. Lisdat et al., Nature Comms. 7, 12443 (2016)

Clock comparisons – Paris & Braunschweig

animation: A. Bezdek and J. Sebera, Computers & Geosciences 56, 127 (2013), data set: ETOPO2 / EGM2008

Local Lorentz invariance: search for daily modulation due to motion wrt. background

was done with Rb clocks (GPS) P. Wolf & G. Petit, Phys. Rev. A **56**, 4405 (1997)

 $|\alpha| \le 10^{-6}$

LLI test also with fast ion beams B. Botermann *et al.*, Phys. Rev. Lett. **113**, 120405 (2014)

 $|\alpha| \leq 2 \times 10^{-8}$

Sr clocks London, Paris, Braunschweig P. Delva *et al.*, Phys. Rev. Lett. **118**, 221102 (2017)

 $|\alpha| \leq 1.2 \times 10^{-8}$

animation: A. Bezdek and J. Sebera, Computers & Geosciences 56, 127 (2013), data set: ETOPO2 / EGM2008

Leaving the lab: Transportable clocks

- flexibility of clock pairs
- choose operation sites to probe the gravity potential
- first step towards space

Transportable optical clocks

- Optical clocks as sensors:
 - Directly measure potential differences.
 - Vision: Realize geoid by clocks.

-60

M. Vermeer, Rep. of the Finnish Geod. Insti. **83**, 1 (1983)

A. Bjerhammar, Bull. Geodesique **59**, 207 (1985)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

National Metrology Institute

Transportable optical clocks

Clock lasers in labs:

48 cm ULE cavity

acceleration sensitivity

12 cm ULE cavity

5 cm ULE cavity

cryogenic 21 cm silicon cavity

S. Häfner *et al.*, Opt. Lett. **40**, 212 (2015),
D. Matei *et al.*, Phys. Rev. Lett. **118**, 263202 (2017)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

thermal noise

20 cm ULE cavity

S. Koller *et al.*, Phys. Rev. Lett. **118**, 073601 (2017) S. Webster & P. Gill, Opt. Lett. **36**, 3572 (2011)

National Metrology Institute

Transportable optical clocks

Car trailer housing the clock

S. Koller et al., Phys. Rev. Lett. 118, 073601 (2017)

View into the car trailer

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute ESA Topical Team Meeting, 22. – 23. 10. 2018, Munich

First time off-campus: Modane – Torino 2016

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Fundamental Physics in Space, October 23 – 27, 2017

National Metrology Institute

Second campaign: Paris – Braunschweig 2017

Combined uncertainty $\approx 3 \times 10^{-17}$ or 30 cm in 3 hours. Gravity potential correction from geodesy: $-247.2(4) \times 10^{-17}$

Second campaign: Paris – Braunschweig 2017

Combined uncertainty $\approx 3 \times 10^{-17}$ or 30 cm in 3 hours.

Gravity potential correction from geodesy: $-247.2(4) \times 10^{-17}$

unfortunately: 'anomaly' in the second half of the campaign

- Need for further practise and improvements
- > 5 days after arrival: atoms in the lattice
- second week: problems with spectroscopy perturbation of the clock laser

 Third week: Clock laser sidebands removed (fibre between clock laser and cavity)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

 improved counting of clock laser by the comb (week 4)

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

National Metrology Institute

 improved counting of clock laser by the comb (week 4)

improved counting of clock laser by the comb (week 4)

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

- ► There is always something new ...
- Reliability is still an issue procedures for 'quality management' have to be improved hardware improvements are ongoing
- I still think that we can do this, even in space!
- \blacktriangleright 10⁻¹⁷ or 10 cm now, 10⁻¹⁸ or 1 cm in a few years

Many thanks to:

Cavities & Combs:

S. Häfner

E. Benkler

D. Matei

T. Legero

U. Sterr

Yb⁺ group at PTB

Fibre link group at PTB

Teams in NMIs Italy (INRIM) France (SYRTE) Teddington (NPL)

MPQ team at Munich

SOC team

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Bundesallee 100

38116 Braunschweig

Christian Lisdat Telefon:0531 592-4320 E-Mail: christian.lisdat@ptb.de www.ptb.de

Stand: 02/17

Status PTB's transportable lattice clock

- ► Approaching design uncertainty of 1×10⁻¹⁷
- Reliability is still a problem
 but it is obvious that you can do better
- Balance design/construction effort with salary of PhD student
- Next generation: lower uncertainty (1×10⁻¹⁸?) more 'user friendly' as heavy and power hungry

Gravity measurements Modane/Torino

© OpenStreetmap

ESA Topical Team Meeting, 22. - 23. 10. 2018, Munich

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Erdbeobachtung:

- Nivellement kleinschrittig (60 m) Fehlerakkumulation
- Schwerefeldmessung (Geoid) & GNSS Satellitendaten niedrige Ortsauflösung
- 3 cm Höhenauflösung über 500 km $\hat{=}$ 3×10⁻¹⁸ Uhrengenauigkeit

39

Gruber et al., ESA report GO-HSU-PL-0021 Height System Unification with GOCE

National Metrology Institute

Further testing at PTB – know your clock

faster averaging using laboratory lasers

Further testing at PTB – know your clock

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

Principle of operation

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

Control of collisional effects in 1D optical lattice

2) Red: broader line, red detuned → MULTIPLY OCCUPANCY

Line pulling at 10⁻¹⁷ level, under investigation.

Stability transfer

- Transfer stability from silicon cavities by stabilising beat.
 H. R. Telle et al., Appl. Phys. B 74, 1 (2002)
- Improved laser coherence
 - Uninterrupted operation for 12 hours with 2.6 s interrogation
 - Regular operation with ∽1 s interrogation
- Improved stability

Instability with ULE® resonator only:

 $1.6 \times 10^{-16} \tau^{1/2}$

A. Al-Masoudi et al., Phys. Rev. A 92, 063814 (2015)

 Instability with silicon resonators: 5×10⁻¹⁷ τ^{1/2}

 Instability with dead time—free interrogation: 6×10⁻¹⁷ τ^{1/2} @ NIST

M. Schioppo et al., Nature Photonics 11, 48 (2017)

