

The compact lattice optical clock `SOC2': performance and perspectives for the ACES mission

S. Origlia, M. S. Pramod, <u>S. Schiller</u> (HHU Düsseldorf),

Y. Singh, K. Bongs (U. of Birmingham),

R. Schwarz, A. Al-Masoudi, S. Dörscher, S. Herbers, S. Häfner, U. Sterr, Ch. Lisdat (PTB Braunschweig)

Work funded under.

HHU, Behmenburg Schenkung, FP-7 ITN "FACT", H2020-RISE "Q-Sense", ESA "I-SOC", CRC 1227 DQ-mat, RTG 1729, EMPIR 15SIB03 OC18.

- A transportable optical lattice clock for the ACES mission
- The breadboard demonstrator of the I-SOC clock
- Comments on I-SOC
- Plans and Conclusion

Intercontinental comparisons

Comparing clocks in an Earth-scale network

- Search for dark matter topological defects crossing the Earth Derevianko & Pospelov, Nature Phys. 10, 933 (2014)
- Differential phase shift between distant clocks

et de microtechnique

PB

HEINRICH HEINE

Leibniz Universität

BIRMINGHAM

FIRENZE

Modular laser system

UNIVERSITYOF BIRMINGHAM

Modular laser system

UNIVERSITY BIRMINGHAM

- Relies on robust, mostly COTS, laser technology
- Units are exchangeable with improved ones

Bongs, K. et al., "Development of a strontium optical lattice clock for the SOC mission on the ISS", C. R. Phys. 16, 553 (2015)

Clock laser integration

UNIVERSITY^{OF} BIRMINGHAM

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

UNIVERSITÄT DÜSSELDORF

Clock laser integration

UNIVERSITY^{OF} BIRMINGHAM

Atomic package transport (6/2015)

Birmingham ----> Eurotunnel

1st stage MOT obtained • within 2 days of arrival

Atoms trapped in lattice • within 3 weeks of arrival

UNIVERSITY OF BIRMINGHAM

HEINRICH HEINI

Only p-wave collisions

Better for accuracy

Collisions: s-wave

May have advantages in terms of simplicity and for transportability; furnishes additional isotope shifts

$(\Delta v_B + \Delta v_I)_{min}$	$-\frac{-7.7 \times 10^{-15}}{}$		
ν_0	$-\frac{T_{\pi}/s}{T_{\pi}}$		

Clock transition line in ⁸⁸Sr (698 nm)

$$\frac{(\Delta v_B + \Delta v_I)_{min}}{v_0} = \frac{-7.7 \times 10^{-15}}{T_{\pi}/\text{s}}$$

Long interrogation time: **4 s** (Fourier-limited linewidth)

²D. G. Matei et al., PRL 118, 2632202 (2017)

BIRMINGHAM

hainvif fains

Clock transition line in ⁸⁸Sr (698 nm)

shifts have to be measured

¹D. G. Matei et al., J. Phys. Conf. Ser., 723, 012031 (2016) ²D. G. Matei et al., PRL 118, 2632202 (2017)

Characterisation of clock

⁸⁷Sr lattice clock (PTB)

A. Al-Masoudi *et al.*, PRA **92**, 063814 (2015)

λ_1 = 698 nm

⁸⁸Sr lattice clock (SOC)

 $\lambda_2 = 698 \text{ nm}$

Silicon reference cavity (PTB)

T. Kessler *et al.*, Nature Phot. **6**, 687 (2012), D. Matei *et al.*, Phys. Rev. Lett. **118**, 263202 (2017)

 $\lambda_3 = 1542 \text{ nm}$

K. Bongs et al. C. R. Physique 16, 553 (2015) S. Origlia et al., arxiv 1603.06062 (2016)

Instability determined by comparison with ⁸⁷Sr clock at PTB^{1,2}

¹S. Falke et al., New J. Phys. 16, 073023 (2014) ²A. Al-Masoudi et al., Phys. Rev. A 92, 063814 (2015)

BI

	Υ.		10			~	
R	M	п	NG	H	A	M	

	SO	C2	2 PTB stationa	
	⁸⁸ Sr clock		⁸⁷ Sr clock	
Effect	$\Delta \nu / \nu$	u	$\Delta \nu / \nu$	u
BBR shift	-523.4	0.8	-492.2	1.5
BBR oven shift	0	0	-0.9	0.9
Lattice shift $(\Delta \nu_{\rm L})$	-1.8	1.1	-0.9	0.4
Probe light shift $(\Delta \nu_{\rm P})$	-96.1	1.3	0.0	0.0
Cold collision shift $(\Delta \nu_{\rm LP})$	-0.6	0.3	0.0	0.2
2^{nd} -order Zeeman shift $(\Delta \nu_B)$	-209.7	0.5	-3.4	0.1
Tunneling	0	0	0.0	0.3
Background gas collision shift	-0.13	0.13	-0.8	0.8
DC-Stark shift	-0.2	0.2	-0.2	0.1
Gravitational shift	+5.1	0.1	0.0	
Total shift	-826.9	2.0	-498.4	2.0

 \times 10⁻¹⁷ \times 10⁻¹⁷ \times 10⁻¹⁷ \times 10⁻¹⁷

Lattice laser: Ti:Sapphire

The SOC breadboard demonstrator is as accurate as the most accurate European lattice clocks

Origlia et al., arxiv.1803.03157; Phys. Rev. A, to appear

v(⁸⁸Sr) – v(⁸⁷Sr) = 62 188 134.027(12) Hz (uncertainty ⁸⁷Sr: 2.0 × 10⁻¹⁷)

Contents

A transportable optical lattice clock for the ACES mission

The breadboard demonstrator of the I-SOC clock

Comments on I-SOC

Plans and Conclusion

Mission I-SOC: An optical clock on the ISS

ACES and I-SOC

• ACES actual/estimated performance vs. I-SOC requirements

	ACES (MWL, ELT)	I-SOC (MWL+, ELT+) *	Improvem.
Clock instability	ability $1 \times 10^{-13} / \tau^{1/2}$ $8 \times 10^{-16} / \tau^{1/2}$ ($\tau \le 2 \times 10^6 \text{ s}$)		x 100
Clock inaccuracy	1x10 ⁻¹⁶	1x10 ⁻¹⁷	x 10
TDEV – MWL/MWL+	1.5 ps ×(τ/10 000 s) ^{1/2}	0.03 ps **, τ > 1000 s	x 150 @ 1 day
TDEV – ELT/ELT+	8 ps @ 10 ⁶ s	1 ps @ 10 ⁶ s	x 8
Phase coherence	yes	yes, minimum 12 h; up to 10 days (25 times)	

- ELT+ supports reaching 1×10⁻¹⁸ for ground clock comparisons (or ground-space)
- I-SOC performance can be tested fully on the ground (*trapped* atoms)
 - * from I-SOC ESR document ** ground-to-space

Preliminary design of sub-systems

Accomodation

- A transportable optical lattice clock for the ACES mission
- The breadboard demonstrator of the I-SOC clock
- Comments on I-SOC
- Plans and Conclusion

Ceramic cavity spacer

(NEXCERA)

New-generation 698 nm laser; 15 mW out of fiber

BIRMINGHAM

C. J. Kwong, M.G. Hansen, J. Sugawara, S.S. *Meas. Sci. Technol.* **29** 075011 (2018)

See also: I. Ito et al. Opt. Express 25 26020 (2017)

zell-DE)

Candidate location

- Goal: unification of height systems in S. America
 - \rightarrow 5 cm clock uncertainty desirable
- Brazilian geodesists expressed interest (G. do Nascimento Guimaraes, A. C. Oliveira Cancoro de Matos, and D. Blitzkow)
- Possible site: Valinhos Astronomical Observatory, 115 km from Sao Paulo Int.I Airport
- Possible partners: Quantum optics group at Univ. Sao Paulo
 [part of ETN 721465 ColOpt Consortium]
- Country knowledge available

- + 1 transportable terminal for calibration
- + 1 transportable terminal in Europe (META

esa

BIRMINGHAM

ILRS Network of SLR Stations

ACES submitted to ILRS as target: Wettzell, the ACES primary station already calibrated; Gratz and Herstmonceaux will follow; other stations can join provided they comply with ISS safety requirements.

Development plan

- Switch to ⁸⁷Sr (fermionic atoms)
- Key technical personell: 2 experienced Ph.D. students, 1 technician
- Many technical details, e.g. transportable thermally stabilized enclosure
- Field test in 2019: INRIM (Torino)
- Home base: PTB (characterizations)

Conclusions

- Providing a lattice clock system (low 10⁻¹⁷ uncertainty) for use during the ACES mission appears feasible
- Candidate location identified
- better/more locations?

Thanks to:

- C. Klempt, I. Kruse (LUH),
- D. Iwaschko, U. Rosowski (HHU),
- M. Misera, A. Koczwara, A. Uhde, T. Legero, D.G. Matei, E. Benkler, and C. Monte (PTB);
- SOC2/I-SOC consortium members;
- L. Cacciapuoti (ESA)