Searching for transient dark matter signatures with atomic clocks

Benjamin M. Roberts¹,

G. Blewitt², C. Dailey², A. Derevianko² (GPS.DM Collaboration)

A. Hees¹, P. Delva¹, P. Wolf¹

¹SYRTE, CNRS, l'Observatoire de Paris, Paris; ²University of Nevada, Reno.

> ACES Workshop 2018, TUM, Munich, 22–23 October 2018

23 October 2018

Outline:

ACES October 2018 B. M. Roberts

Outline

- Ultralight DM + TDs
- GPS
- Discovery frontiers
- Asymmetry & ann. modulation
- Conclusion

- Ultra light dark matter; "clumps", e.g. Topological defects
- Transient signals: Global networks of precision devices
- GPS: 50,000km aperture sensor array
 - $\bullet~\sim$ 30 satellite clocks, > 15 years of archived data
- GPS + other existing
 - limits: orders of magnitude improvement for certain models
- Extending discovery reach: Optical clock networks
- Noise asymmetry & annual modulation signatures

Outline

Ultralight DM + TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Dark Matter: What is it?

- $\bullet \sim 25\%$ of Universe energy budget (cf $\sim 5\%$ for "normal" matter)
- \bullet Narrowed down to ~ 90 orders-of-magnitude window:

Rough mass-range for various models:

- MACHOs: $10^{58} 10^{68}$ eV
- WIMPs: $10^6 10^{12} \text{ eV}$
- I-WIMPS: 1 10⁶ eV
- Axions: $10^{-10} 10^{-4} \text{ eV}$
- Ultralight Q fields: $10^{-24} 1 \text{ eV}$

 $(ext{context:} m_{ ext{Earth}} \sim 10^{60}\, ext{eV} m_{ ext{electron}} \sim 10^{6}\, ext{eV})$

• Even asserting that DM is a fundamental particle: $10^{-24} < m/eV < 10^{19} \implies$ 40 orders of magnitude range

Outline

Ultralight DM + TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Ultralight Dark Matter:

WIMPs

- long-time "favourite" DM candidate
- Masses \sim 10 1000 GeV
- Many null WIMP results
- Increased interest in other forms of DM

Ultralight fields (e.g., axions)

- Masses $\sim 10^{-24} 1\,\text{eV}$
- Oscillating field: $\phi = a \cos(m_a t)$
- Stable topological defects: monopoles, strings, walls
 - Also: Q-balls, solitons, "clumps"

• Peccei & Quinn '77, Weinberg '78, Dine & Fischler '82,...

Ultralight DM + TDs

Topological Defects

- monopoles, strings, walls,
- Defect width: $d \sim 1/m_{\phi}$
- Earth-scale object $\sim 10^{-14} \, \mathrm{eV}$

α'

Inside: $\phi^2 \rightarrow A^2$, Outside: $\phi^2 \rightarrow 0$

Topological Defect DM

Dark matter: Gas of defects • DM: galactic speeds: $v_g \sim 10^{-3}c$ • A^2 , d, $\mathcal{T}_{b/w \text{ collisions}} \implies \rho_{DM}$

 $A^2 = \rho_{\rm DM} \, v_g \, d \, \mathcal{T},$

 Sikivie '82, Preskil '83, Vilekin '85, Coleman '85, Lee '89, ...

Outline

Ultralight DM + TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Shift in atomic clock frequencies

• DM may interact with: Photons, fermions \implies shifts in energy levels \implies shifts in clock frequencies

$$rac{\delta \omega(r,t)}{\omega_0} = \phi^2(r,t) \sum_X K_X \Gamma_X$$

K_X sensitivity: Flambaum, Dzuba, Can. J. Phys. 87, 25 ('09).

Monitor Atomic Clocks

 $\bullet\,$ Correlated signal propagation through network, $v\sim300\,km/s$

• Derevianko, Pospelov, Nat. Phys. 10, 933 (2014).

Outline

Ultralight DM -TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

GPS: 50,000 km DM observatory

- $\bullet\,$ 32 satellite clocks (Rb/Cs), $\sim\,$ 16 years of high-quality data
- Also several H-maser ground-based clocks.
- Data from JPL: (sideshow.jpl.nasa.gov/pub/jpligsac/)
 - 30s sampled data; 0.01–0.1 ns precision
- $\bullet\,$ Correlated, directional signal, with $v_g\sim 300\,{\rm km/s}$

- Derevianko, Pospelov, Nat. Phys. 10, 933 (2014).
- & GNOME: Pospelov, Pustelny, Ledbetter, Kimball, Gawlik, Budker, PRL110, 21803 ('13).

Outline

Ultralight DM -TDs

GPS

Discovery frontiers

Asymmetry & ann. modulatio

Conclusion

• T

Discovery frontiers $\bullet \Lambda_x \bullet d$

Number density

- Low number density, few interactions
- Need longer $T_{\rm obs}$

Sensitivity

- More precise clocks
- High sensitivity K_X

$$\frac{\delta\omega}{\omega} = \mathcal{K}_{\alpha} \frac{\delta\alpha}{\alpha} = \frac{\mathcal{K}_{\alpha}}{\Lambda_{\alpha}^2} \phi_{\mathsf{0}}^2$$

GPS: BMR, Blewitt, Dailey, Murphy, Pospelov, Rollings, Sherman, Williams, Derevianko, Nature. Comm. 8,1195 (2017). 2016: Wcislo, Morzynski, Bober, Cygan, Lisak, Ciurylo, Zawada, Nature. Astro. 1,0009 (2016). 2018: Wcislo, Ablewski, Beloy, Bilicki, Bober, Brown, Fasano, Ciurylo, Hachisu, Ido, Lodewyck, Ludlow, McGrew, Morzynski, Nicolodi, Schioppo, Sekido, Le Targat, Wolf, Zhang, Zjawin, Zawada, arXiv:1806.04762 (2018). Astro: Olive, Pospelov, Phys.Rev.D 77,043524 (2008).

Outline

Ultralight DM TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Sensitivity

Optical clocks

• Superior precision; but only have sensitivity to $\delta \alpha$

Microwave (hyperfine)

• Sensitivity to: $\delta \alpha$, $\delta (m_q / \Lambda \text{QCD})$, $\delta (m_e / m_p)$

GPS: BMR, Blewitt, Dailey, Murphy, Pospelov, Rollings, Sherman, Williams, Derevianko, Nature.Comm.8,1195 (2017). Optical Sr: Wcisło, Morzynski, Bober, Cygan, Lisak, Ciurylo, Zawada, Nature.Astro.1,0009 (2016).

Outline

Ultralight DM TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Resolution: simulation using GPS

- Resolve \vec{v} DM vel. distro is "known" reject false positives!
- Many clocks
- High sampling frequency and/or Large distances
 - BMR, Blewitt, Dailey, Derevianko, Phys. Rev. D 97, 083009 (2018).

Optical fibre network

Outline

Ultralight DM -TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Fibre network

- High-accuracy long-distance clock comparisons
- Different clocks: Hg/Sr/Yb
- \sim Days weeks synchronous running
- High sensitivity: limited only by clocks themselves
- Sr-Sr: $\delta\omega/\omega\sim 3 imes 10^{-17}$ at 1000s
- "Long" observation time + Good for large objects
 - Lisdat et al. (PTB, LNE-SYRTE), Nature Commun. 7, 12443 (2016).
 - Delva et al. (PTB, SYRTE, NPL, ..), Phys. Rev. Lett. 118, 221102 (2017).

Size (field-mass)

Outline

Ultralight DM TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Large size (low mass)

- Require tracking signal over time (>minutes)
- Homogeneous network: Clocks far apart
- Or, networks of clocks with different K_X

Outline

Ultralight DM TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Small objects: no correlated signal

- \bullet small size $\, \sim \rightarrow \,$ large rate
- Shift in mean: unobservable (DM always present)
- Induce non-Gaussian features (such as an asymmetry)

Asymmetry

Outline

Ultralight DM + TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Annual modulation

- Yearly change in event rate:
- Sun + Earth velocities add
- $R(t) = R_0 + R_m \cos(\omega t + \phi_{\text{June}2})$
- $\Delta \kappa_3/\kappa_3 = 10\%$

• BMR, Derevianko, arXiv:1803.00617

Limits Q-balls: α (photon field)

BMR, Derevianko, arXiv:1803.00617

Red line: sensitivity estimate for 1 year of optical Sr

Can also place limits on topological defects

Conclusion

Take-away:

ACES October 2018 B. M. Roberts

Outline

Ultralight DM + TDs

GPS

Discovery frontiers

Asymmetry & ann. modulation

Conclusion

Global clock networks as a DM observatory

- Large network size: better resolution: better discrimination
- Different clock types: broader range of models/couplings
- Already: Orders of magnitude improvement for certain models
- Substantial improvements expected: especially for large objects

Precision measurement data:

- Don't need continuous data time-stamps
- Synchronisation is not a leading source of error (DM is "slow")
- Not restricted to clocks: other precision devices also

Some references:

Axions, ultralight scalar DM:

- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
- P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983); Phys. Rev. Lett. 48, 1156 (1982).

Topological defect DM, non-topological solitons, Q-balls:

- T. W. B. Kibble, Phys. Rep. 67, 183 (1980).
- A. Vilenkin, Phys. Rep. 121, 263 (1985).
- S. Coleman, Nucl. Phys. B 262, 263 (1985).
- K. Lee, J. A. Stein-Schabes, R. Watkins, and L. M. Widrow, Phys. Rev. D 39, 1665 (1989).
- A. Kusenko and P. J. Steinhardt, Phys. Rev. Lett. 87, 141301 (2001).

Non-gravitational TD searches + proposals

- Derevianko, Pospelov, Nat. Phys. 10, 933 (2014).
- M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. J. Kimball, W. Gawlik, and D. Budker, Phys. Rev. Lett. 110, 21803 (2013).
- Y. V. Stadnik, V. V. Flambaum, Phys. Rev. Lett. 113, 151301 (2014); PRL 114, 161301 (2015).
- E. D. Hall, T. Callister, V. V. Frolov, H. Muller, M. Pospelov, and R. X. Adhikari, arXiv:1605.01103.
- P. Wcisło, Morzynski, Bober, Cygan, Lisak, Ciuryło, M. Zawada, Nat. Astron. 1, 9 (2016).
- P. Wcisło, et al., arXiv:1806.04762 (2018).
- BMR, Blewitt, Dailey, Murphy, Pospelov, Rollings, Sherman, Williams, Derevianko, Nature.Commun.8, 1195 (2017); BMR, Blewitt, Dailey, Derevianko, Phys.Rev.D 97, 083009 (2018).
- BMR, Derevianko, (2018).

Aside: challenges of re-purposed data

data from JPL: Histogram

- Possible that some clocks mis-identified (Here, one of the "Rb" clocks is probably Cs).
- Same discrepancy in autocorrelation function, Allan variance etc.