New Refined Observations of Climate Change from Spaceborne Gravity Missions

International Spring School Neustadt an der Weinstraße, Germany, March 10-14, 2025

Special Aspects of GRACE-FO Level1 Instrument Data

Vitali Müller (Max Planck Institute for Gravitational Physics, Albert-Einstein-Institute AEI)

Freie Universität

Berlin

RAV

OVERVIEW

- **GRACE-FO Instruments**
- From Level0 to Level1b Overview
- **Error types in time-series data (Spectral densities, Tone Errors)**
- Spectral content of accelerometer and ranging data
- **Accelerometer & Processing**
- **Laser Ranging Instrument Data**
- LRI working principle
- Level1B processing corrections
- Comparison of LRI and KBR data
- Complete chain from Level1a to Level1b
- [Special Events in LRI data]

GRACE-FO INSTRUMENTS

[Kornfeldt, 2019]

Inter-satellite range is modulated by

- Earth's gravitational field & its variations
- non-gravitational forces

Simplified Model:

Gravity Signal $\approx \ddot{\rho} - a_{\rm ng,LOS,SC1} - a_{\rm ng,LOS,SC2}$

DATA PROCESSING LEVELS

Level0 Raw Telemetry Non-destructive / reversible re-formating Concatenate, remove duplicates

Binary data in Packet Utilization Standard (PUS) Format

Data often organized in files obtained during downlink of ground-station passes

Science and Housekeeping channels

Can include diagnostic data files

Science Tlm typically: 10 Hz

Level1A Readable Telemetry

Human-readable science and housekeeping telemetry

Filter &

Engineering units (volt, ampere, degC) or raw digital counts

Diagnostic data often removed

Local instrument time-system, local instrument coordinate system

Organized in daily data files

Same data rate as level0

LEVEL 1 DATA PRODUCTS

Level-1A

ACC1A	ACC measurements
ACT1A	Corrected ACC measurements
AHK1A	ACC housekeeping data
GNV1A	GPS navigation measurements
GPS1A	GPS measurements
HRT1A	High Resolution Temperature measurements
IHK1A	IPU housekeeping data
ILG1A	IPU log messages
IMU1A	IMU measurements
KBR1A	KBR phase measurements
LHK1A	LRI housekeeping data
LLG1A	LRI log messages
LLT1A	LRI states and light times
LRI1A	LRI phase measurements
LSM1A	LRI steering mirror measurements
MAG1A	Magnetometer and magnetorquer measurement
MAS1A	Spacecraft and fuel mass
PCI1A	Antenna offset corrections to KBR range
PLT1A	Satellite states and signal travel times from PO
SCA1A	SCA measurements
THR1A	Thruster activation data
TNK1A	Gas tank sensor data
	•

Level-1B

Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) Level-1 Data Product User Handbook

> JPL D-56935 (URS270772) NASA Jet Propulsion Laboratory California Institute of Technology

Hui Ying Wen Gerhard Kruizinga Meegyeong Paik Felix Landerer William Bertiger Carly Sakumura Tamara Bandikova Christopher Mccullough

September 11, 2019

LEVEL 1 EXAMPLARY FILES

gracefo_1B_2025-02-13_RL04.ascii.LRI.tgz
gracefo_1B_2025-02-13_RL04.ascii.noLRI.tgz

Level1A and Level1B can be downloaded from

- https://podaac.jpl.nasa.gov/
- https://isdc.gfz.de/grace-fo-isdc/

MAX PLANCK GESELLSCHAFT

1 }	neader:
2	dimensions:
3	num_records: 86400
4	global_attributes:
5	acknowledgement: GRACE-FO is a joint mission of the US National Aeronautics and Space Adminis
0	Jata. See https://podaac.jpl.nasa.gov/CitingPODAAC
6	conventions: CF-1.6, ACDD-1.3, ISO 8601
7	creator_email: gracefo@podaac.jpl.nasa.gov
8	creator_institution: NASA/JPL
9	creator_name: GRACE Follow-On Science Data System
10	creator_type: group
11	creator_url: http://gracefo.jpl.nasa.gov
12	date_created: 2025-02-24T23:36:40Z
13	date_issued: 2025-03-04T23:12:37Z
14	history:
15	- "INPUT FILE NAME : GNV1B<-GLI1B_2025-02-12_D_04.dat"
16	- "INPUT FILE CREATION TIME (UTC): GNV18<-2025-02-24 23:29:24 by operator"
17	- "INPUT FILE NAME : GNV1B<-GLI1B_2025-02-13_D_04.dat"
18	- "INPUT FILE CREATION TIME (UTC): GNVIB<-2025-02-24 23:29:24 by operator"
19	- "INPUT FILE NAME : GNV1B<-GLI1B_2025-02-14_D_04.dat"
20	- "INPUT FILE CREATION TIME (UTC): GNV1B<-2025-02-24 23:29:24 by operator"
21	id: 10.5067/GFJPL-L1B04
22	Institution: NASA/JPL
23	instrument: GPS
24	instrument_vocabulary: NASA Global Change Master Directory instrument keywords
25	keywords: GRACE-FO, GPS
26	keywords_vocabulary: NASA Global Change Master Directory (GCMD) Science Keywords
27	license: https://science.nasa.gov/earth-science/earth-science-data/data-information-policy
28	naming_authority: org.doi.dx
29	platform: GRACE D
30	platform_vocabulary: NASA Global Change Master Directory platform keywords
31	processing_level: 18
32	product_version: 04
33	program: NASA Earth Systematic Missions Program
34	project: NASA Gravity Recovery And Climate Experiment Follow-Un (GRACE-FU)
35	publisher_email: podaac@jpi.hasa.gov
36	publisher_institution: NASA/JPL
20	publisher_name: Physical Oceanography Distributed Active Archive Center
38	publisher_type: group
29	publisher_uit: http://podaac.jpl.nasa.gov
40	reventions, intros.//podadc.jpl.nasa.gov/gravity/gracero-documentation
41	Source, Interctate riame LidjeCtortes for URACE D
42	Summed y: 1-n2 Lidjectory states from POD in Inertial Frame
C++	time_coverage_start: 2025-02-10100:00:00.00
44	Lume_coverage_scop: 2025-02-15123:59:59.00
45	cutte, underto Level-ID Intel Mediate UPS Navigation Data
40	non-standard_attributes:
47	epture hume. 2000-01-01112:00:00:00
40	Software_pottd_time. 2023-00-2117:10:4/ UIC
49	stortware_version: v04.10.2020-11-09-//-gcSe91-dlFty
50	start_time_epoti_sets: 792676800
51	stop_time_epocn_secs: /92/63199
52	variables:
53	- gps_tume:
54	COMMENT: 1ST COLUMN
55	coverage_content_type: referenceInformation
56	Long_name: Continuous seconds past 01-Jan-2000 11:59:47 UTC
57	units: second
	- CDACEEO id.

 150
 792676801 D I 427564.6352263996 6057358.040302394 -3155736.877840905 1e+33 1e+33 1e+33 -422.5157959062738 -3493.676853305417 -6774.377637247225 1e+33 1e+33 1e+33 1000000
 10000000

 151
 792676802 D I 427141.8537302129 6053860.597779282 -3162509.286331594 1e+33 1e+33 1e+33 -423.0471081361137 -3501.207457102856 -6770.437942160043 1e+33 1e+33 1e+33 1000000
 10000000

 152
 792676803 D I 426718.5411869024 6050355.62686138 -3169277.750922137 1e+33 1e+33 1e+33 1e+33 -423.5778900445349 -3508.733641327917 -6766.489837808739 1e+33 1e+33 1e+33 10000000
 10000000

152 792676803 D I 426718.5411869024 6050355.62686138 - 3169277.750922137 1e+33 1e+33 -423.5778900445349 - 3508.733641327917 -6766.489837808739 1e+33 1e+33 1e+33 1000000 153 792676804 D I 426294.6981271177 6046843.131972939 -3176042.263205828 1e+33 1e+33 1e+33 -424.1081409750633 -3516.255396620868 -6762.533329306249 1e+33 1e+33 1e+33 1000000

long name: Quality flags

149 792676800 D I 427986.8851454694 6060847.950015823 -314

148 # End of YAML header

ERRORS IN TIME-SERIES DATA

Physical measurements like

- Inter-satellite range
- Non-gravitational accelerations

are recorded as voltage by an analog-to-digital converter in terms of digital raw counts (value 0... 1023).

Conversion from raw counts to physical units via calibration factors

Measurements or conversions have different types of errors:

- Stochastic / random noise
 - Correctly described by a spectral density over frequency
 - Amplitude (Linear) spectral density (ASD/LSD): e.g. m/rtHz
 - Power spectral density (PSD): e.g. m² / Hz
 - Averaging of data improves the signal-to-noise ratio
- Deterministic errors
 - Sinusoidal (tone) errors at particular frequencies
 - Correctly described by an amplitude spectrum (e.g. m(rms) at f)
 - Biases/offsets
 - Drifts

TYPICAL LRI AND ACC SIGNALS

- Instrument noise models / requirements close to actual measurements at high frequencies (above 0.1 Hz)
 - measurement is noise dominated
- LRI ranging data around 30..200 mHz dominated by non-gravitational signals (ACC)
 - LRI data above predicted noise
- Below 30 mHz, LRI and ACC are signal dominated
- LRI data exhibits 7..8 orders of magnitude between noise floor and signal

INTER-SATELLITE RANGING – SIGNAL CONTENT

ACCELEROMETER

Proof-mass re-centered by electro-static forces in housing

- Applied force ideally equal to non-gravitational accelerations acting on S/C
 - Atmospheric air drag
- Force applied between electrode plates and PM
 - common force along one PM face: linear force / acceleration
 - differential force between electrodes on one side: angular force/acc.

PM co-located with satellite center-of mass

- co-location regularly measured using calibration maneuvers
- mass-trim mechanism activated to re-center S/C CoM to PM

Accelerometry is challenging

- ACC level1b data is highly low-pass filtered
- short-term disturbances/signals (e.g. from thruster) are not properly resolved in GRACE-FO
 - thruster events replaced by models
- GRACE-D ACC is malfunctioning
 - transplant ACC products available

SuperSTAR accelerometer with the sensor unit (right) and the ICU (left), image credit: ONERA; https://directory.eoportal.org/web/eoportal/satellite-missions/g/grace

ACCELEROMETER PERFORMANCE MODELS

Christophe, Onera, Development status of GRACE Follow-On accelerometers, GSTM 2015

	Range	Resolution
x_{ARF}	$\pm 5\cdot 10^{-4} \tfrac{m}{s^2}$	$10^{-9} \frac{(m/s^2)}{\sqrt{Hz}}$
YARF	$\pm 5 \cdot 10^{-5} \frac{m}{s^2}$	$10^{-10} \frac{(m/s^2)}{\sqrt{Hz}}$
z_{ARF}	$\pm 5 \cdot 10^{-5} \frac{m}{s^2}$	$10^{-10} \frac{(m/s^2)}{\sqrt{Hz}}$
$\varphi({ m pitch})$	$\pm 10^{-3} \frac{rad}{s^2}$	$2 \cdot 10^{-7} \frac{(rad/s^2)}{\sqrt{Hz}}$
θ (yaw)	$\pm 10^{-2} \frac{rad}{s^2}$	$5 \cdot 10^{-6} \frac{(rad/s^2)}{\sqrt{Hz}}$
ψ (roll)	$\pm 10^{-2} \frac{rad}{s^2}$	$5 \cdot 10^{-6} \frac{(rad/s^2)}{\sqrt{Hz}}$

Table 5.1: SuperSTAR range and resolution performance.

Najda Peterseim, TWANGS – High-Frequency Disturbing Signals in 10 Hz Accelerometer Data of the GRACE Satellites

INTERFEROMETRY

Electro-magnetic waves (light, radio or microwaves) are

- exchanged between satellites
- produced by an oscillator
 - Laser Ranging Instrument: laser source (resonator)
 - Microwave Ranging Instrument (KBR/MWI): ultra-stable oscillator clock at MHz, upconverted to 24/32 GHz
 - GNSS satellite: atomic clock transitions, upconverted to 1.1 .. 1.5 GHz (L1, L2, L5)

EM waves described by a field vector

- amplitude $\operatorname{Re}[\vec{E}^c] \propto \operatorname{Re}[e^{i\omega t ikr}] = \cos(\omega t kr) = \cos(\omega \cdot t \omega \cdot \Delta t) \propto \vec{E}$
- phase and frequency $\omega = 2\pi f = \frac{\mathrm{d}}{\mathrm{d}t}\varphi(t)$

Received phase is proportional to time and propagation delay (distance)

Phase can be measured by beating/interfering received (RX) waves with local field/oscillator (LO)

Phase tracking/measurement used in

- GNSS / GPS receiver
- Microwave Ranging
- Laser Ranging

LRI MEASUREMENT PRINCIPLE

Role of Reference and Transponder interchangeable

- Both S/C almost identically equipped
- Both S/C emit light at 1064 nm wavelength (281 THz) with 25 mW optical power

Transponder S/C: high-gain frequency locked loop (FLL)

- ensures that measured phase is a phase ramp with 10 MHz slope
- transponder laser has 10 MHz offset w.r.t. received light

Reference S/C:

- Active laser frequency stabilization
- Measured frequency: 2x Doppler + frequency offset
- Phase:

$$\begin{split} \varphi_{\mathrm{PM,R}}(t) &= 10\,\mathrm{MHz} \cdot t + \Phi_{\mathrm{Las,R}}(t) - \Phi_{\mathrm{Las,R}}(t - \Delta t_{\mathrm{RTR}}) + \mathrm{const.} \\ &\approx 10\,\mathrm{MHz} \cdot t + \dot{\Phi}_{\mathrm{Las,R}} \cdot \Delta t_{\mathrm{RTR}} + \mathrm{const.} \end{split}$$

LRI OPTICAL LAYOUT

Triple Mirror Assembly (TMA)

- produces 60 cm lateral beam offset
- guides beams around cold-gas tanks and KBR system
- "Reference points" at TMA vertex,
 - i.e. close to S/C center-of-mass

KBR (& LRI) LRI1B DATA FORMAT

LRI re-uses KBR data format

Instantaneous (Corrected) biased range formed by

- biased ranged (includes the ionospheric correction)
- light time correction
- antenna offset correction

Parameter	Definition
gps_time	Seconds past 12:00:00 noon of January 1, 2000 in GPS Time
biased_range	CRN-filtered biased inter-satellite range. If KBR1B, contains ionospheric correction. See
	usage notes below table.
range_rate	First time derivative of biased_range
range_accl	Second time derivative of biased_range
iono_corr	If KBR1B: biased ionospheric correction for biased_range, for Ka frequency. If LRI1B:
LRI scale	estimated scale correction epsilon for biased_range, range_rate, and range_accl due to
	unknown onboard LRI frequency (scale correction $= 1 + epsilon)$
lighttime_corr	Light time correction for biased_range
lighttime_rate	Light time correction for range_rate
lighttime_accl	Light time correction for range_accl
ant_centr_corr	If KBR1B: antenna phase center offset correction for biased_range. If LRI1B: not defined
ant_centr_rate	If KBR1B: antenna phase center offset correction for range_rate. If LRI1B: not defined
ant_centr_accl	If KBR1B: antenna phase center offset correction for range_accl. If LRI1B: not defined
K_A_SNR	If KBR1B: SNR of K band for GRACE-FO C (or GRACE A) satellite (units of 0.1 db-Hz).
CNR S/C_C	If LRI1B: CNR of laser ranging for GRACE-FO C (or GRACE A) satellite (db-Hz)
Ka_A_SNR	If KBR1B: SNR of Ka band for GRACE-FO C (or GRACE A) satellite (units of 0.1
N/A	db-Hz). If LRI1B: not defined
K_B_SNR	If KBR1B: SNR of K band for GRACE-FO D (or GRACE B) satellite (units of 0.1 db-Hz).
CNR S/C_D	If LRI1B: CNR of laser ranging for GRACE-FO D (or GRACE B) satellite (db-Hz)
Ka_B_SNR	If KBR1B: SNR of Ka band for GRACE-FO D (or GRACE B) satellite (units of 0.1
N/A	db-Hz). If LRI1B: not defined
qualflg	Quality flag. Meanings of individual integers, from position 0 at right to position 7 at left,
	are as follows:
	0: Phase break
1. 1	1: If KBR1B: unreliable PCI1A data for ant_centr_corr. If LRI1B: not defined
e light time	2: If KBR1B: interpolated PCI1A data for ant_centr_corr. If LRI1B: not defined
	3-4: Not defined
	5: If KBR1B: data corrected for time tag bias in either K or Ka phase. If LRI1B: not defined
	6: Interpolated data point (due to gap) exists > 5 s from center of CRN filter window
	7: Interpolated data point (due to gap) exists ≤ 5 s from center of CRN filter window

Correcting Biased Range Before using the **biased_range**, **range_rate**, and **range_accl** values, the light time and antenna offset corrections must be added as follows:

Corrected biased range = biased_range + lighttime_corr (+ ant_centr_corr if KBR1B)

Corrected range rate = range_rate + lighttime_rate (+ ant_centr_rate if KBR1B)

Corrected range acceleration = range_accl + lighttime_accl (+ ant_centr_accl if KBR1B)

LIGHT TIME CORRECTION

• Measured range differs from the instantaneous Euclidean separation $|\vec{r_1}(t) - \vec{r_2}(t)|$

due to finite speed of light

- instantaneous range needed for gravity field recovery
- Special relativistic effects
 - depend on velocity (and acceleration) of satellites
- General relativistic effects depend on
 - Earth's gravity field
 - Earth's Rotation (spin)
- Light time correction computed from GNSS derived orbit states
- LTC has a magnitude of up to
 - 200 km / c * 1 m/s = 660 μ m

Journal of Geodesy (2021) 95:48 https://doi.org/10.1007/s00190-021-01498-5

ORIGINAL ARTICLE

Revisiting the light time correction in gravimetric missions like GRACE and GRACE follow-on

Yihao Yan^{1,2} · Vitali Müller³ · Gerhard Heinzel³ · Min Zhong^{2,4}

Received: 19 May 2020 / Accepted: 4 March 2021 / Published online: 7 April 2021 \circledcirc The Author(s) 2021

 $\varphi_{\rm PM,R}(t) = 10 \,\mathrm{MHz} \cdot t + \Phi_{\rm Las,R}(t) - \Phi_{\rm Las,R}(t - \Delta t_{\rm RTR}) + \mathrm{const.}$ $\approx 10 \,\mathrm{MHz} \cdot t + \dot{\Phi}_{\rm Las,R} \cdot \Delta t_{\rm RTR} + \mathrm{const.}$

It is noteworthy that the leading term in the TWR light-time correction

$$c_0 \widehat{T}_{\text{TWR}} = c_0 \frac{\mathcal{T}_{\text{MeTp}} + \mathcal{T}_{\text{TpMr}}}{2} = -\frac{|\mathbf{r}_B - \mathbf{r}_A| \cdot \dot{\rho}_{\text{inst,OD}}}{c_0} + \text{const.} + \dots$$
(71)

differs by a factor of two compared to the DOWR correction (cf. Eq. (52)), whereby the static part has a similar magnitude (cf. Table 5).

ANTENNA OFFSET CORRECTION (TILT-TO-LENGTH)

Phase-tracking devices or ranging instruments like

- GPS (High-Low),
- KBR (Low-Low),
- LRI (Low-Low)

exhibit a cross-coupling between platform attitude and measured range (phase)

- center of rotation = S/C center-of-mass
- reference point for range/phase = antenna phase center or LRI TMA vertex point

Coupling Magnitude:

- Coupling factors LRI in yaw & pitch: ${\sim}100~\mu\text{m/rad}$ and ${\sim}1~\text{mm/rad}^2$
- Coupling factors KBR in yaw & pitch: ~100 μm/rad and ~1.4 m/rad²

Satellite attitude variations/deadband

• ~300 µrad (peak)

Official data products (RL04) consider only

• KBR antenna offset correction: static coupling factors

Alternative (AEI) data products (RL50)

- KBR & LRI antenna offset correction: dynamic coupling factors based on calibration maneuvers
- Available at: https://www.aei.mpg.de/grace-fo-ranging-datasets

IONOSPHERIC CORRECTION

- Free electrons in atmosphere change refractive index & propagation time
 - For KBR: total delay along one-way can be ~13 mm/c
- Static delays are uncritical, because phase tracking is always biased ranging
 - variations in delay / electron content are critical
- Effect is proportional to wavelength² ($1/f^2$)
 - highly relevant for KBR
 - negligible for LRI (10 ppb smaller than KBR)
- Microwave ranging instrument (MWI/KBR) and GPS perform dual-band measurements at different frequencies
 - variability in electron content can be measured
 - MWI/KBR: between satellites
 - GPS: between GRACE satellite and GNSS satellite
 - Ionosphere-free phase/range combination possible

 $\rho_{\text{DOWR}}(t) := c_0 \cdot \frac{-9}{7} \cdot \frac{\varphi_{\text{DOWR}}^{\text{K}}(t)}{\nu_{\text{A}}^{\text{K}} + \nu_{\text{B}}^{\text{K}}} + c_0 \cdot \frac{16}{7} \cdot \frac{\varphi_{\text{DOWR}}^{\text{Ka}}(t)}{\nu_{\text{A}}^{\text{Ka}} + \nu_{\text{B}}^{\text{Ka}}}$

$$\Delta t_{\text{media}} = \frac{1}{c_0} \int_{\mathcal{P}} (n-1) \, \mathrm{d}s \approx -\frac{40.3 \, \mathrm{Hz}^2/\mathrm{m}}{c_0 \cdot f_{\text{em}}^2} \cdot \frac{\mathrm{TEC}}{1 \, e^-/\mathrm{m}^2} = -\frac{40.3 \, \mathrm{Hz}^2}{f_{\text{em}}^2} \cdot \frac{\langle \eta \rangle}{1 \, e^-/\mathrm{m}^3} \cdot \Delta t_{\text{SR}},$$
(28)

https://www.oc.nps.edu/NWDC_EM_Course/course_ materials/module2_2.html

LASER VS MICROWAVE RANGING

Comparing GRACE-FO KBR and LRI Ranging Data with Focus on Carrier Frequency Variations

by (2) Vitali Müller 1.* 😒 😕, (2) Markus Hauk ^{1,2,3}, (2) Malte Misfeldt ¹ ⁽²⁾, (2) Laura Müller ¹, (2) Henry Wegener ¹, (2) Yihao Yan ¹ ⁽²⁾ and (2) Gerhard Heinzel ¹ ⁽²⁾

- Ionospheric effect significant (and is being corrected for)
- Microwave ranging limits (most-likely) KBR-LRI residuals
 - Time-tag accuracy after POD (black-solid trace)
- Frequency variations of microwaves (derived from USO) might impact as well
 - AEI applies carrier-frequency variations correction (FVC) in RL50

 High frequencies in KBR dominated by Phase-Readout noise

LRI LEVEL1A TO LEVEL1B PROCESSING

LRI LEVEL1A TO LEVEL1B PROCESSING

DEGLITCHING

- LRI data showed "phase jumps" when attitude control thrusters were fired
 - Laser crystal & laser frequency disturbed by micro-shocks
- Phase jump was present on both satellites (both data streams)
 - transponder data much cleaner as no ranging signal present
- Disturbances followed a pattern (template)
 - step response passing through on-board filter chains
 - each event samples template only sparsely and with undefined timing
- Transponder data was used to estimate scale and time of step/template
- Template was subtracted from reference (master) LRI data data
 - take into account propagation delay between satellites
- Flight-Software update changed configuration of the LRI
 - glitches removed/attenuated in-flight since September 2022
- Initial deglitching of LRI data on JPL side was not optimal until August 2020
 - use AEI data-sets:

https://www.aei.mpg.de/grace-fo-ranging-datasets

DEGLITCHING

- LRI data showed "phase jumps" when attitude control thrusters were fired
 - Laser crystal & laser frequency disturbed by micro-shocks
- Phase jump was present on both satellites (both data streams)
 - transponder data much cleaner as no ranging signal present
- Disturbances followed a pattern (template)
 - step response passing through on-board filter chains
 - each event samples template only sparsely and with undefined timing
- Transponder data was used to estimate scale and time of step/template
- Template was subtracted from reference (master) LRI data data
 - take into account propagation delay between satellites
- Flight-Software update changed configuration of the LRI
 - glitches removed/attenuated in-flight since September 2022
- Initial deglitching of LRI data on JPL side was not optimal until August 2020
 - use AEI data-sets:

https://www.aei.mpg.de/grace-fo-ranging-datasets

LRI LEVEL1A TO LEVEL1B PROCESSING

Summary LRI1B v50 Processing Steps

Legend

Raw Phase: - unit: counts

stored as uint64

TIME-TAG CONVERSION

- GRACE-like missions require well-known timing relation between
 - GNSS/GPS observations
 - Inter-satellite ranging observations
 - Common clock required for both instruments
- Since GRACE-FO Instrument Processing Unit (IPU) contains
 - GNSS receiver
 - Microwave ranging system
- timing is well known between GNSS and MWI.
- LRI time-tag conversion more elaborated due to different time systems
 - time-tag offsets change upon instrument reboots
 - on-board computer is in the loop and might introduced delays
- Conversion to GPS time requires precise orbit determination
 - on-board navigation solution not sufficient

• Formula:

GPS time_tag = LRI time_tag + DTR_{offset} + TIM1B_{offset} + CLK1B_{offset} (+ Δt_{filter}).

SCALE FACTOR FOR RANGING

- Ranging instrument exhibit high signal to noise ratio
 - 10⁷ in SNR requires a scale error of 10⁻⁷
- Conversion from phase to biased range/distance via wavelength (= c/frequency)
- Microwave Ranging Instrument scale factor well known
 - USO frequency and microwave frequencies (carrier) directly determined through precise orbit determination relative to GNSS
- LRI laser frequency depends on the laser and optical resonator
 - good stability, but poor accuracy
- GRACE-FO with tech-demo LRI:
 - Primary approach:
 - cross-correlate MWI ranging data with LRI ranging data
 - refine LRI scale factor
 - Alternative approaches (less precise)
 - rely on ground-calibrations or temperature models
- Future missions (GRACE-C, NGGM):
 - dedicated measurement technique to measure laser frequency
 - Scale Factor Unit / Scale Factor Measurement System

Simplified Formula:

Accurate approach:

A handy approximation of the exact form in eq. (28) with all quantities being evaluated at the same time is given as

LRI LEVEL1A TO LEVEL1B PROCESSING

CRN FILTERING

- Special (but simple) FIR filters used in GRACE-context
 - Convoluted Rectangle of order N (CRN)
- Filter ensures that

- high frequencies are attenuated prior decimation
 - avoid aliasing noise
- Low frequencies have unity gain
 - deviations smaller than 10⁻⁷
- Filters can be directly used to differentiate data •

[Master thesis, Laura Müller, 2021, AEI]

10⁰

10⁵

Magnitude

Parameter	Value
Sampling rate f_s	~10 Hz
Optimal frequency f_0	0.176 mHz
Cut-off frequency f_c	0.25 Hz
Filter length in samples N_f	747
Convolution number N_c	9

10⁵ ENBW= 24.6 uHz ASD LRI Biased Range (left y-axis) Effect CRN Filter (left y-axis) 1-Magnitude CRN Filter (right y-axis) 10⁻¹⁰ 10⁻¹⁵ 0.25 Hz 0.176 mHz 10-20 10-20

10-2

Fourier Frequency [Hz]

10⁻¹

10-3

10-4

CRN Filter Effects on LRI Biased Range

EVENTS IN LRI DATA I

• Sun-Blinding

- LRI receives into baffles direct sun-light at particular locations in orbit
- occurs every ~161 days for a few days
- DC channels of LRI saturate, higher noise possible in ranging data
- Laser link is maintained
- Parasitic accelerations/velocity change along line-of-sight from **attitude control thruster**
 - individual events not useful (low rate, noise)
 - stacking of several thousand events provides clear model/curve
 - estimated dv values can be used to improve ACC models/processing
 - lowers spectrum of LRI data

EVENTS IN LRI DATA II

- Momentum-Transfer Events
 - sporadic disturbances in the LRI data
 - some of them are correlated with disturbances in ACC GF1 and GF2 (level1a)
 - events have non-zero momentum / velocity change
 - area under acceleration curve
 - likely micro-meteorides impinging onto S/C
 - µgram scale objects, a few 10 µm size
 - Some events show large delta-V in LRI, but ~zero in ACC
 - disturbances not properly resolved by ACC
 - Observed event rates consistent with models of space-debris & micro-meteoride background
 - 50% error bars on models
 - Events not visible in KBR due to higher noise

What is Level0, Level1A, Level1B instrument data? Where to get it? Documentation -> Handbook Basic understanding how to convert level0 to level1b data? Most important data corrections for ranging data

Ionospheric correction, Antenna-Offset, Light-Time-Correction
 Similarity of KBR and LRI data & processing
 What are the challenges in level1 processing?