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ABSTRACT
Satellite gravity data such as provided by the Gravity Recovery and
Climate Experiment (GRACE) and its follow-up mission contain
valuable information on all geophysical processes that involve a
mass redistribution in the Earth system. However, as gravity is
an integral quantity, only the sum of all signal components can
be measured. In order to exploit gravity data for improving the
geophysical understanding of the underlying mass redistribution
processes, an algorithm to separate the superimposed signals is
needed. We present two methods that solve the signal separation
problem in global, spatial-temporal gravity data based on prior
knowledge on the characteristic behavior of the individual signal
components: A principal component analysis-based method is com-
pared to a conditional generative adversarial network that has been
originally developed for image-to-image translation tasks. Both
methods are tested on synthetic model data in a closed-loop setup,
and are shown to successfully accomplish the task of separating
gravity signals related to atmospheric and oceanic processes from
signals caused by processes in the continental hydrosphere. The
two methods show a comparable level of prediction errors. For both
methods, the preprocessing of the gravity signals before the signal
separation step, more precisely, the choice of the gravity field func-
tional, has a considerable impact on the predictive performance.
All in all, we emphasize the potential of neural network algorithms
for signal separation in spatial-temporal geodetic data, and suggest
a more specific tuning of the algorithm to the task of interest.
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1 INTRODUCTION
The Earth’s gravity field changes in time due to mass redistribu-
tion processes in the hydrosphere, the atmosphere, the oceans, the
cryosphere and the solid Earth. Observing these temporal gravity
variations, e.g. by dedicated satellite gravity missions, provides
valuable insight into the underlying geophysical processes causing
the mass changes. The Gravity Recovery and Climate Experiment
(GRACE, mission period 2002-2017, [18]) and its follow-up mission
GRACE-Follow on (GRACE-FO, mission in orbit since 2018, [4],
[10]) provide global datasets of monthly to sub-monthly variations
of the Earth’s gravity field at a spatial resolution of a few 100 km. In
order to extend the gravity data time series beyond the GRACE-FO
mission lifetime, as well as to increase the temporal and spatial
resolution of the dataset, as future gravity mission concept the Mass
Change And Geoscience International Constellation (MAGIC) is
currently developed and designed ([11], [7]).

While the data of the GRACE(-FO) mission are used for a mul-
titude of scientific applications (see e.g. [2] for a recent review),
one major challenge in the processing of gravity data that is still
not finally solved is the problem of signal separation: Since gravity
is an integral quantity, only the sum of all mass variations can
be measured. A separation of the total signal into the individual
sub-signals and thus the assignment to their original sources needs
to be performed as a part of the data processing.

In general, there exist several approaches for signal separation of
spatial-temporal geodetic data. The most commonly used method
is to subtract all signal components which are not of interest from
the data using external geophysical models for these components.
This approach has the disadvantage that model errors are directly

Figure 1: The algorithm to be developed is able to separate
spatial-temporal gravity signals related to atmosphere and
ocean (AO) and hydrological (H) processes from their sum
AOH.
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propagated to the target signal, which can lead to significant error
contributions in the estimated signal of interest (e.g. [14], [19]).

A further approach is the combination and joint inversion of the
data with other datasets that have a different functional relation-
ship to the mass change phenomenon of interest and are therefore
complementing the information of GRACE(-FO) (e.g. [20], [24]).
However, this approach is not applicable if complementary datasets
do not exist for the considered process, which is often the case.

Another group of signal separation methods that avoids the
introduction of model errors are algorithms exploiting the statisti-
cally differing behavior of the signal components to be separated.
Methods based on the principal component analysis (PCA; [13],
[15], [6]) derive typical spatial patterns for the individual signal
components from auxiliary (model or observational) data and use
them as prior knowledge to extract the signal components from
their measured sum. Independent component analysis (ICA; [5],
[1], [16]) methods, in contrast, perform a form of blind source sep-
aration, assuming statistical independence of signals coming from
independent physical processes.

While the PCA methods recognize the individual signal compo-
nents based on their main patterns in space domain, in gravity data,
typical patterns also exist in the temporal domain. Therefore, we
attempt to exploit as much prior knowledge on the individual signal
components as possible, by performing a supervised training of a
neural network architecture using model data for the individual
signal components as training data.

In the area of training neural networks on signal separation tasks,
we have found previous work on time series (audio) data (e.g. [22],
[12]) or 2d-image data (e.g. [17]). Selecting a suitable architecture
for signal separation of spatial-temporal data, however, does not
seem straightforward. In our paper, we investigate the applicability
of a typical image processing algorithm for our purpose. As it is an
application-independent algorithm that has already been success-
fully applied to a large variety of tasks, we select the conditional
generative adversarial network pix2pix [9] as representative of such
an algorithm. As a reference, we compare the obtained results to
corresponding results using the PCA-based method from [15].

In the present paper, we limit ourselves to these two statistical
methods. The other above-described signal separation strategies
(subtraction of non-target signals using external geophysical mod-
els; joint inversion of multiple complementary datasets) are em-
ployed in real data processing, but cannot be transferred directly
to the here-considered simulation test case.

As shown by Fig. 1, we set up a synthetic closed-loop test en-
vironment, where we investigate as a representative case study
the task of separating spatial-temporal gravity signals caused by
processes in the atmosphere and oceans (AO) and hydrospheric sig-
nals (H) from their sum AOH. The AO and H signals are chosen as
sub-signals as they represent the largest-amplitude signal parts in
temporal gravity data (except of glaciated areas). The A and O com-
ponents are not separated further, as due to the inverted barometer
effect [23], gravity signals due to mass variations in the atmosphere
and oceans are not perfectly separable in oceanic regions.

Prior knowledge on the characteristic signal behavior is intro-
duced in the form of model data of the year 1995, while the corre-
sponding model data of the year 2002 are used for testing. While
this is a highly simplified setup which is not fully representative

of the signal separation task in real satellite gravity data, which in-
clude a much higher number of signal components as well as noise,
we consider this setup as a first step in the algorithm development
and performance assessment, which in future work will need to
become refined towards a higher complexity.

Our paper is structured as follows: Section 2 introduces the
ESA Earth System Model, which serves as dataset in this study. In
section 3, both the PCA-based as well as the pix2pix neural network
algorithms are described. Section 4 contains selected experiments
to evaluate the performance of the two investigated families of
algorithms. Finally, we conclude our study in section 5 and give a
brief outlook.

2 THE ESA EARTH SYSTEM MODEL DATASET
For the development and testing of signal separation methods, we
work with closed-loop simulations, as they allow to assess the
performance of the investigated methods by computing their pre-
diction error, which is the difference between the predicted and
the respective true signal components. As model for the individual
gravity signal components, we are using the updated Earth System
Model of ESA (ESM, [3]). The latter is a synthetic model for varia-
tions in the Earth’s gravity field induced by realistic mass variations
caused by geophysical processes in the atmosphere (A), the oceans
(O), the continental hydrosphere (H), the cryosphere (I, for ice), and
the solid Earth (S). The model spans the period 1995 to 2006 and
gives the respective gravity variations parameterized in terms of
spherical harmonic (SH) coefficients for the temporal deviations
of the gravity potential from its 11-year mean. The maximum SH
degree and order is 180, representing a spatial resolution of about
110 km. The temporal resolution is 6 h, such that for each model
year, 1460 or 1464 (depending on the number of days) sets of SH
coefficients are provided. As described in section 1, for our study
we use the model data of the years 1995 and 2002, and consider the
sum AO of the A and O model components as well as the H model
component.

The full preprocessing flow starting from the SH coefficient sets
is visualized in Fig. 2. Each set of SH coefficients is expanded to a spa-
tial (363-by-725 latitude-longitude) grid of equivalent water heights
(EWHs) according to [21], or as an alternative, of geoid heights
according to [8]. Both quantities are scalar-valued and represent
functionals describing the time- and position-dependent strength of
the Earth’s gravity field. The main mathematical difference of these
two functionals (disregarding their physical meaning) is that for
the computation of EWHs, the SH coefficients are scaled according
to their SH degree, leading to an amplification of large-SH degree
(i.e. small-scale) signal components in the resulting data grids.

In the next step, the spatial grids are concatenated to form a
363-by-725-by-1460 latitude-longitude-time data matrix containing
the data of one model year, and interpolated along the longitude
and time axes to 256 samples each. The latter step is performed
in order to match the data format expected by the pix2pix cGAN
algorithm [9], and represents a down-sampling from 55 km to about
156 km in the longitude direction, and from 6 h to about 34 h in the
time direction. Also, the data is normalized to values between -1
and 1 using a fixed normalization factor.
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Figure 2: Preprocessing flow applied to each data year of the considered ESM components (A, O, H), starting from the d/o 180
SH coefficient sets each describing a 6-hour mean anomalous A, O or H gravity potential. The data preparation only splits up to
the data formats required by the two signal separation methods (cf. section 3) at the very end.

We note that the described down-sampling is a limitation that
needs to be improved in a future neural network architecture for
signal separation. However, our goal is to test the original pix2pix
code for our question of interest. Therefore, we present respective
results using the interpolated data in this paper.

Only in the very last step visualized by Fig. 2, the data is brought
to the formats expected by the two methods: As the pix2pix method
(cf. section 3.2) operates on 2-dimensional square images as training
or testing data samples, 256-by-256 time-longitude slices are ex-
tracted from the interpolated 363-by-256-by-256 data matrix. This
results in 363 2-dimensional data samples, each containing the data
values of one fixed latitude value, i.e. representing the temporal evo-
lution of one pixel row in the original latitude-longitude coordinate
grid. For the PCA method (cf. section 3.1), the interpolated 363-
by-256-by-256 data matrix is reshaped to one large 2-dimensional
matrix containing the complete global, 1-year dataset. In this 256-
by-92928 datamatrix, each row contains the data values of one point
in time, with the columns corresponding to all latitude-longitude
pairs of the complete coordinate grid.

3 METHODS
3.1 Principal Component Analysis (PCA)
The idea of principal component analysis (PCA, [13]) is to extract
typical spatial patterns for each of the two considered signal com-
ponents (here: AO and H) and to use these patterns, also called
empirical orthogonal functions (EOFs), as basis vectors spanning
two signal component subspaces. In the following, we briefly out-
line the method as used in our application.

As a first step, each component is considered separately to find
the EOFs associated with its spatial-temporal signal via PCA:

𝐴𝑂1995 (𝑡, 𝑝) =
∑︁
𝑖

𝑐𝐴𝑂,𝑖 (𝑡) 𝐸𝑂𝐹𝐴𝑂1995,𝑖 (𝑝)

𝐻1995 (𝑡, 𝑝) =
∑︁
𝑖

𝑐𝐻,𝑖 (𝑡) 𝐸𝑂𝐹𝐻1995,𝑖 (𝑝),
(1)

where 𝐴𝑂1995 and 𝐻1995 are the 256-by-92928 time-position
gridded datasets of the AO and H signals of the year 1995 (see

Fig. 2, bottom right). 𝑡 denotes time, 𝑝 the latitude- and longitude-
dependent position on the global coordinate grid, 𝑐 {𝐴𝑂,𝐻 },𝑖 the
principal components representing the temporal evolution of the
individual modes, and 𝐸𝑂𝐹{𝐴𝑂,𝐻 },𝑖 the above-mentioned spatial
patterns of the AO and H signals, respectively. As the used dataset
comprises 256 time steps, a total of 256 linearly independent EOFs
is computed. In Eq. (1), the EOFs are sorted by decreasing amount
of input signal energy covered.

This first step of computing the EOFs corresponds to building
the signal separation model based on prior information of the year
1995. In the following second and third step, this PCA separation
model is applied to the ESM data of the year 2002. The second step
consists of expressing the full signal AOH as linear combination of
the (before-computed) EOFs of the individual signals:

𝐴𝑂𝐻2002 (𝑡, 𝑝) ≈
𝑁𝐴𝑂∑︁
𝑖=1

�̂�𝐴𝑂,𝑖 (𝑡) 𝐸𝑂𝐹𝐴𝑂1995,𝑖 (𝑝)

+
𝑁𝐻∑︁
𝑖=1

�̂�𝐻,𝑖 (𝑡) 𝐸𝑂𝐹𝐻1995,𝑖 (𝑝)

(2)

and subsequently computing the time-variable coefficients �̂�𝐴𝑂,𝑖 (𝑡)
and �̂�𝐻,𝑖 (𝑡) via Least-Squares-Adjustment (LSA).

In the third step, the individual components 𝐴𝑂2002 and 𝐻2002
are retrieved using the coefficients �̂� computed in the second step:

𝐴𝑂2002 (𝑡, 𝑝) =
𝑁𝐴𝑂∑︁
𝑖=1

�̂�𝐴𝑂,𝑖 (𝑡) 𝐸𝑂𝐹𝐴𝑂1995,𝑖 (𝑝)

𝐻2002 (𝑡, 𝑝) =
𝑁𝐻∑︁
𝑖=1

�̂�𝐻,𝑖 (𝑡) 𝐸𝑂𝐹𝐻1995,𝑖 (𝑝)

(3)

The matrices 𝐴𝑂2002 (𝑡, 𝑝) and 𝐻2002 (𝑡, 𝑝) are subsequently re-
shaped to 363-by-256-by-256 latitude-longitude-time matrices for
the predicted AO and H signals, respectively.

The number of EOFs, 𝑁𝐴𝑂 and 𝑁𝐻 , used in Eqs. (2) and (3) could
e.g. be tuned by iterating over the second and third of the above-
described steps and choosing the values resulting in the smallest
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Figure 3: One training sample used for the pix2pix method.
Panels a-c (d-f) show the 3 color channels of the input (target)
image.

prediction errors 𝐴𝑂2002 −𝐴𝑂2002 and 𝐻2002 −𝐻2002. In our study,
we use all modes, i.e. fix 𝑁𝐴𝑂 = 𝑁𝐻 = 256, which minimizes the
prediction errors on the test dataset in the case of EWH data. In
general, reducing the number of modes in Eqs. (2) and (3) has the
benefit of reducing the overlap between the subspaces spanned by
the AO and H EOFs, but the drawback that the signal variability
covered by the two subspaces is reduced.

3.2 Conditional Generative Adversarial
Network

As neural network method, we use the conditional generative ad-
versarial network (cGAN) pix2pix [9]. It consists of two parts: The
generator has the task to translate a 256-by-256 3-channel input
image to an image of similar dimensions, while the discrimina-
tor is trained to distinguish the images produced by the generator
from true images, when given an input-output image pair. Both
network parts are simultaneously trained, in order to achieve a
balance between the generator’s ability to fool the discriminator
and the discriminator performance.

To transform our data to the format expected by the pix2pix algo-
rithm, we use the 256-by-256 time-longitude data samples (cf. Fig. 2
top right), and fill the sum of the considered signals, AO+H=AOH, in
the first color channel of the input image, and the individual signal
components AO and H in the first and second color channel of the
output image, respectively. Figure 3 visualizes the color channels
of one input-output image pair used for the pix2pix training.

The two remaining color channels of the input image are filled
with supplementary information that might be useful for the train-
ing: In the second channel (Fig. 3 b), values of -1 and 1 are given for
oceanic and continental pixel points, respectively, and the pixels of
the third channel are filled with the (normalized, constant) latitude
value of the sample. The remaining color channel of the output
image is filled with the same values as the first input channel. We
note that by the latter, we introduce an additional task to be learned
by the net, which is to remember the AOH signal. In tests not shown
in this paper, this additional task seemed to be beneficial for the
main task (being the correct prediction of the AO and H signal
components). However, we emphasize that the performance of the

trained nets is evaluated on the predicted first and second output
channels, while the third output channel is completely disregarded.

The architecture as well as the loss functions governing the
training process are not changed compared to the original pix2pix
algorithm. Additional constraints concerning the signal separation
task (such as e.g. a loss term forcing the sum of the predicted
components AO and H being equal to the AOH input signal) are
not introduced, as our objective is to evaluate the performance of
the un-modified pix2pix algorithm for a signal separation task. For
the batch size, we test values of 1 and 64, for the learning rate, we
use 1e-4, 5e-5 or 1e-5, and a fixed number of 1000 training epochs
is used for all separation models.

As described in section 2, the ESM data of the year 1995 (2002)
are used to train (test) the pix2pix separation models. The testing
consists of successively running all samples of the test dataset
through the trained separation model, and subsequently re-sorting
the output data to build a 363-by-256-by-256 latitude-longitude-
time matrix for the predicted AO and H signals each, covering the
complete (global, 1-year) dataset.

4 EXPERIMENTS
4.1 Experimental Setup
The signal separation task visualized by Fig. 1 is solved based on
the same data derived from the ESA ESM (cf. section 2) using the
two methods introduced in section 3. Concretely, we consider the
following signal separation models, which differ by the used gravity
field functional as well as, in the case of the pix2pix models, by the
used batch size (b.s.) and learning rate (l.r.):

• pix2pix (E,1,5e-5): EWH model data; b.s.=1, l.r.=5e-5
• pix2pix (E,64,5e-5): EWH model data; b.s.=64, l.r.=5e-5
• pix2pix (E,1,1e-4): EWH model data; b.s.=1, l.r.=1e-4
• pix2pix (E,1,1e-5): EWH model data; b.s.=1, l.r.=1e-5
• pix2pix (G,1,5e-5): geoid height model data; b.s.=1, l.r.=5e-5
• PCA (E): EWH model data
• PCA (G): geoid height model data

These signal separation models were selected in order to perform
the following three experiments, the results of which are presented
and discussed in the following sections 4.2, 4.3 and 4.4:

• Experiment (1):Compare pix2pix (E,1,5e-5), (E,64,5e-5), (E,1,1e-
4) and (E,1,1e-5), to assess the impact of batch size and learn-
ing rate in the pix2pix method

• Experiment (2): Compare PCA (E) and pix2pix (E,1,5e-5),
to assess the relative performance of the PCA-based and
pix2pix methods

• Experiment (3): Compare PCA (E) and pix2pix (E,1,5e-5) to
PCA (G) and pix2pix (G,1,5e-5), to assess the impact of the
chosen gravity field functional

The reasoning behind those experiments is to first make a choice
on the hyperparameters used for the pix2pix method, which is then
kept for the two subsequent experiments, where the performance of
the PCA-based and pix2pix signal separation methods is compared.
The latter is done considering the prediction errors on the (complete,
1-year, global) test dataset as a quality measure. The prediction
errors are computed as difference between the predicted and true
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Figure 4: Loss curves for the two signal separation models
pix2pix (E,1,5e-5) (solid) and pix2pix (E,64,5e-5) (dotted) as a
function of training epoch. The two separation models only
differ by their batch size. The learning rate amounts to 5e-5
for both models, both models have been trained on EWH
model data. The curves have been smoothed with a window
of length 10 to improve the readability of the plots.

AO and H signals, which are given as 3d latitude-longitude-time
matrices, as detailed in section 3.

For the visualizations, statistical measures such as the mean ab-
solute value of all matrix entries, or root-mean-square (rms) values
along two of the three matrix axes are built, or the values cor-
responding to a fixed point in time or a fixed point in space are
extracted. Besides the individual AO and H prediction errors, also
their sum is considered, which allows to classify the error type: If
the component errors mostly cancel when summed up, this indi-
cates that the prediction errors are dominated by parts of the input
signal that are assigned to the wrong component (called "assign-
ment error", in the following). If, in contrast, the component errors
mostly add up as they have the same sign, the prediction errors are
dominated by parts of the input signal that are not assigned to any
of the two components (called "absent signal error", in the follow-
ing). Besides the absolute prediction errors, also their magnitude
relative to the signal amplitude is considered, by dividing the mean
absolute error by the mean absolute value of the corresponding (AO,
H or AOH) signal. In all cases, we treat the AO and H predictions
of the PCA-based and the pix2pix separation models equally.

In addition, the training process of the pix2pix models is exam-
ined by computing the prediction errors on the test or training
dataset after each training epoch. Also, internal quality measures
of the pix2pix cGAN, being the discriminator loss as well as the
two components of the generator loss (GAN loss and L1 loss) are
investigated as a function of training epoch.

4.2 Experiment (1): Influence of
hyperparameter choice in pix2pix cGAN

The purpose of this first experiment is to assess the impact of the
hyperparameters batch size (b.s.) and learning rate (l.r.) on the
performance of the pix2pix signal separation method. To this end,
we consider the separation models pix2pix (E,1,5e-5), (E,64,5e-5),
(E,1,1e-4) and (E,1,1e-5) (cf. section 4.1) and evaluate internal (loss
curves) as well as external quality measures (prediction error on
test year 2002 data).

Firstly, we investigate the impact of the batch size by fixing the
value of the learning rate to 5e-5 and comparing the separation

Figure 5: Mean absolute prediction errors on the test dataset
(year 2002), as a function of training epoch, for the signal
separation models pix2pix (E,1,5e-5) and (E,64,5e-5) (a) and
pix2pix (E,1,1e-5), (E,1,5e-5) and (E,1,1e-4) (b). Blue (red) curves
show the AO (H) prediction errors; green curves show the
errors on the sum of the predicted AO and H components.
The curves have been smoothed with a window of length 10
to improve the readability of the plots.

models pix2pix (E,1,5e-5) and pix2pix (E,64,5e-5). Fixing the learning
rate to different values revealed similar results (not included here).

As shown by Fig. 4, in the case of pix2pix (E,1,5e-5), the discrim-
inator and generator GAN losses fluctuate strongly as a function
of epoch and do not seem to converge to stable values, while they
stay (besides temporary deviations) at a relatively stable level for
pix2pix (E,64,5e-5). Another effect is that both the L1 loss (Fig. 4
c) and the prediction errors on the test dataset (Fig. 5 a) decrease
more slowly for pix2pix (E,64,5e-5) than for pix2pix (E,1,5e-5), i.e.
the training as a function of epoch is slowed down if increasing the
batch size.

That is, for our specific application of the pix2pix cGAN architec-
ture, b.s. > 1 is required to achieve a stable training of the GAN in
terms of a simultaneous training of the discriminator and generator
part. However, after 1000 training epochs, using b.s.=1 gives about
half the prediction errors on the test dataset than b.s.=64. As our
application aims at finding a separation model that gives minimum
prediction errors on the test dataset in terms of the numerical dif-
ference between predicted and true signal components, we choose
b.s.=1 for our signal separation application of pix2pix.

The impact of the learning rate on the test errors is visualized
by Fig. 5 b, where pix2pix (E,1,1e-5), (E,1,5e-5) and (E,1,1e-4) are
compared. pix2pix (E,1,1e-4) shows a strong decrease of errors at
the beginning of the training and a slight increase starting at about
epoch 100, indicating a too long training. In the case of pix2pix
(E,1,1e-5), the smaller learning rate leads to large spikes in the test
error curves indicating local minima that are disturbing the training
process. Also, the model does not seem to have converged after
1000 epochs yet. That is, changing the learning rate in the pix2pix
method mainly impacts the regularity of the training process and
the optimum number of epochs to be used to reach the best possible
performance on the test dataset.
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Figure 6: Prediction errors of the signal separation models
PCA (E) (d-f) and pix2pix (E,1,5e-5) (g-i) on the test dataset
(year 2002) in terms of RMS values built along the time and
longitude axes (left), the time and latitude axes (middle) and
the latitude and longitude axes (right). The blue (red) curves
refer to the AO (H) signal component, while the green curve
refers to their sum.

Considering the above-made findings, we use b.s.=1 and l.r.=5e-5
for demonstrating the performance of the pix2pix cGAN architec-
ture for the considered signal separation task in the following two
experiments (sections 4.3 and 4.4). An optimization of the values
for b.s., l.r. and the training duration for our setting would require
further systematic tests.

4.3 Experiment (2): Relative performance of
PCA and pix2pix cGAN

The purpose of this second experiment is to assess the relative
performance of the pix2pix and the PCA-based method for our
signal separation task. To this end, we compute the prediction
errors of the separation models pix2pix (E,1,5e-5) and PCA (E) on
the complete test dataset, and visualize their rms values along the
latitude, longitude and time axes in Fig. 6.

It can be seen that the prediction errors of both methods are
mostly smaller than the corresponding signals, on the order of 50 %
of the signal amplitudes. A systematic difference between the two
methods is their behavior regarding the sum of the component
errors: Following our explanations in section 4.1, in the case of
pix2pix (E,1,5e-5), the prediction errors seem to be dominated by
"assignment errors", while in the case of PCA (E), "absent signal
errors" seem to dominate.

The former observation indicates that the pix2pix (E,1,5e-5) neu-
ral net has learned during the training to distribute (almost) the total
AOH signal energy to the two available components, despite the
fact that no constraint forcing the sum of the predicted components
being equal to the input signal was imposed.

The latter observation indicates that in the PCA (E) separation
model, the AO and H subspaces representing the AO and H signal
variability seem to be mostly distinct, having a negligible overlap,
i.e. PCA (E) seems to be able to distinguish well between signal
parts caused by AO and H processes. The amplitude of the "absent
signal errors", however, indicates that the dimensionality of the two
component subspaces is not sufficient to resolve the full AO and
H signal variability in the test dataset, such that a significant part

Figure 7: Predictive performance of the signal separation
models PCA (E) (d-i) and pix2pix (E,1,5e-5) (j-o) on the test
dataset (year 2002). The data of the time step 100 has been
extracted to observe the respective spatial patterns.

Figure 8: Predictive performance of the signal separation
models PCA (E) (c, d) and pix2pix (E,1,5e-5) (e, f) on the test
dataset (year 2002). The data of a coordinate grid cell in the
Amazon basin has been extracted to observe the respective
temporal patterns.
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of the input signal can not be assigned to any of the components.
This could be improved by using a larger number of EOFs to span
the individual subspaces, which would however require to use a
larger amount of data (e.g. including the data of multiple years) for
the computation of the EOFs.

Interestingly, for both methods, the type of prior knowledge
given to the respective method is not (clearly) reflected by the pre-
diction error variations along the individual coordinate directions:
Although in PCA (E) only the signal patterns in space (latitude,
longitude) domain are used as prior knowledge, also the variability
in time domain is reproduced by the model. In the case of pix2pix
(E,1,5e-5), despite only the signal patterns along the longitude and
time axes were explicitly given to the model in the training process,
and signals of different latitudes are treated as independent, the
model does not perform worse in reproducing the signal variability
along the latitude compared to the longitude axis.

Figure 7 shows the signals and errors for one point in time, the
choice of which is arbitrary and does not impact the qualitative
spatial behavior observed (which is also reflected by the very weak
time-dependency of the prediction errors, revealed by Fig. 6 f and i).
Figure 7 shows that the AO andH predictions of PCA (E) and pix2pix
(E,1,5e-5) agree well in their large-scale pattern with the true signals,
and their errors are dominated by short-scale features. Besides the
observation of (mostly) cancelling AO and H prediction errors in
the case of pix2pix (E,1,5e-5) and (mostly) additive component errors
in the case of PCA (E) already made above, a closer look to the PCA
(E) results allows to give examples of the two prediction error types
defined in section 4.1: "Absent signal errors" can be observed in
Fig. 7 h in South America and Africa, where the H errors consist of
short-scale H signal energy, as the AO signals in these regions are
rather low. "Assignment errors" can be observed in the more large-
scale AO and H error patterns on the continents in the northern
hemisphere, which mostly cancel when added up (cf. Fig. 7 i).

Furthermore, Fig. 7 m and n reveal that the "assignment errors"
of pix2pix (E,1,5e-5) are mostly confined to the continents, i.e. the
neural net learned that AOH signal energy in oceanic regions has
to be assigned to the AO component, as the H signal is zero there.

Figure 8 shows the signals and errors for a fixed continental grid
point with dominating H signal, which has been chosen to test
the separation models’ performance to extract the H signal in the
Amazon basin. The shown temporal evolution of the signals and
errors confirms the observations made in Fig. 7 on the error types
in this region: In the case of PCA (E), the AO and H errors mostly
add up, while they nearly cancel in the case of pix2pix (E,1,5e-5).

In summary, we found that the pix2pix method provides predic-
tion errors of comparable amplitude as the PCA method. Remark-
ably, the pix2pix neural net was even able to learn relationships
such as the equality between the sum of the predicted components
and the input signal, or the confinement of the H component to
the continents, without having received explicit information on
these rules via corresponding constraints. We found that in terms
of the predictive performance on the test dataset, the model pix2pix
(E,1,5e-5) is limited by "assignment errors", which are signal parts
that are assigned to the wrong signal component, while the model
PCA (E) is limited by an insufficient representation of especially
short-spatial scale signal components by the used AO and H sub-
spaces, leading to a dominance of "absent signal errors".

Figure 9: Prediction errors of the signal separation models
PCA (G) (d-f) and pix2pix (G,1,5e-5) (g-i) on the test dataset
(year 2002) in terms of RMS values built along the time and
longitude axes (left), the time and latitude axes (middle) and
the latitude and longitude axes (right). The blue (red) curves
refer to the AO (H) signal component, while the green curve
refers to their sum

Figure 10: Predictive performance of the signal separation
models PCA (G) (d-i) and pix2pix (G,1,5e-5) (j-o) on the test
dataset (year 2002). The data of the time step 100 has been
extracted to observe the respective spatial patterns.

4.4 Experiment (3): Influence of used gravity
field functional

In this section, we investigate how the results presented in section
4.3 change if signals preprocessed to data grids of geoid heights
instead of EWHs are considered (cf. section 2). To this end, we
investigate the predictive performance of the separation models
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Figure 11: Predictive performance of of the signal separation
models PCA (G) (c, d) and pix2pix (G,1,5e-5) (e, f) on the test
dataset (year 2002). The data of a coordinate grid cell in the
Amazon basin has been extracted to observe the respective
temporal patterns.

PCA (G) and pix2pix (G,1,5e-5) in Figs. 9, 10 and 11, and compare
them to the before-analyzed Figs. 6, 7 and 8 that show corresponding
results for the separation models PCA (E) and pix2pix (E,1,5e-5).
Additionally, the prediction errors of PCA (E), PCA (G), pix2pix
(E,1,5e-5) and pix2pix (G,1,5e-5) on the training and test datasets
are compared in Fig. 12. We note that the below-presented results
on the impact of using geoid height vs. EWH grid data have been
found to be independent of the batch size and learning rate used in
the pix2pix method.

Regarding the considered signals themselves, Fig. 9 a-c and 10
a-c reveal that, when expanded to geoid height grids, the signals
have a much more long-wavelength signature in space domain
compared to the EWH grid data (cf. Fig. 6 a-c and 7 a-c). This is
due to the amplification of the small-scale signal components when
expanding the SH signal coefficients to EWH grids (cf. section 2).

Regarding the prediction errors of PCA (G) and pix2pix (G,1,5e-5),
Fig. 9 shows that, similarly to what was observed for PCA (E) and
pix2pix (E,1,5e-5), both methods predict the AO and H signals at a
comparable accuracy, with a signal-to-noise ratio of > 1.

One difference to the results presented in section 4.3 is the predic-
tive performance of the PCA-based and the pix2pix method along
the time axis: As shown by Figs. 9 f, i and 11 d, f, the PCA (G)
prediction errors fluctuate more strongly in time domain than it is
the case for pix2pix (E,1,5e-5). Also, Fig. 11 reveals that the pix2pix
method seems to be better at distinguishing the low-frequency,
annual behavior of the H component from the higher-frequency
behavior of the AO signals. A reason could be that the PCA-based
method only uses prior knowledge in terms of spatial patterns while
the pix2pix method is also trained on temporal patterns.

Figure 12: Mean absolute prediction errors on the training
(year 1995; a, c) and test (year 2002; b, d) datasets, as a func-
tion of training epoch, for the separation models pix2pix
(E,1,5e-5) (a, b) and pix2pix (G,1,5e-5) (c, d). Dashed lines show
the respective error of the PCA (E) (a, b) and PCA (G) (c, d)
predictions for reference. The numbers in the insets give the
mean absolute error relative to the respective mean absolute
signal as achieved by the separation models (after 1000 train-
ing epochs, in the case of the pix2pix models).

A systematic difference of PCA (E) and PCA (G), as can be seen
by comparing Figs. 6 d-f and 9 d-f (and also Figs. 7 g-i and 10 g-
i), is that while the PCA (E) prediction errors are dominated by
"absent signal errors", the PCA (G) prediction errors are dominated
by "assignment errors". This means, if signals expanded to the more
long-wavelength geoid height grids are investigated, also the PCA
method distributes almost the total input signal to the two signal
components AO and H, as it is the case for both pix2pix (E,1,5e-5)
and pix2pix (G,1,5e-5).

The fact that the "absent signal errors" are smaller for PCA (G)
than for PCA (E) indicates that in the case of PCA (G), the AO and
H signal subspaces better represent the AO and H signal variability
contained in the test dataset. This reduces the amount of input
signal energy that does not become assigned to any of the two
components. However, the fact that the "assignment errors" are
larger for PCA (G) than for PCA (E) indicates larger correlations
between the AO and H signals when expressed as geoid heights,
which lead to an increased overlap of the AO andH signal subspaces.
This overlap could be reduced by using a smaller number of EOFs to
span the AO and H subspaces for our PCA-based signal separation
method (which would, however, increase the "absent signal error",
i.e. an optimum number of modes to reach minimum prediction
errors would need to be determined).
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Finally, we consider how the training process of the separation
models pix2pix (E,1,5e-5) and pix2pix (G,1,5e-5) compares, by con-
sidering the associated training and test errors as a function of
epoch in Fig. 12. As shown by panels a and b, the training and test
error curves for pix2pix (E,1,5e-5) look very similar and reach a
comparable error level, while for pix2pix (G,1,5e-5) (panels c and
d), the AO and H test errors are about three times larger than the
associated training errors. This discrepancy of the performance
of pix2pix (G,1,5e-5) on the training and test datasets suggests a
strong overfitting when training based on geoid height grids, which
seems to be avoided when training based on EWH grids. This can
be explained by the geoid height grids being dominated by long-
wavelength features, which lead to strong correlations among the
training samples used for the pix2pix method. In the case of the
EWH data samples, as here the smaller-scale structures dominate,
these correlations are much reduced, preventing the separation
model to "remember" signal structures instead of learning general
rules on how to predict the target images based on the input images.

The prediction errors of the PCA (G) and PCA (E) separation
models on the training and test datasets are indicated as dashed lines
in Fig. 12. For both the PCA (G) and the PCA (E)model, the AO andH
prediction errors on the test dataset are larger than on the training
dataset. This reflects the fact that the EOFs spanning the AO and H
signal subspaces were computed based on the training data, thereby
representing the signal characteristics of the training data, while
the test data’s signal variability is not fully included in the used
AO and H signal subspaces. While this is a general observation
independent of the considered functional, the magnitude of the
difference between training and test errors reflects how much the
training and test data differ in terms of their spatial signal patterns.

The black dashed lines in Fig. 12 show that both for the training
and the test errors, the AO and H prediction errors of PCA (E) ac-
cumulate when added up, while they mostly cancel in the case of
PCA (G). This confirms the above-made observation on dominat-
ing "absent signal errors" in the case of PCA (E) and dominating
"assignment errors" in the case of PCA (G).

The relative errors given by the insets in Fig. 12 allow to judge
the mean absolute errors in relation to the corresponding signals.
As the mean absolute value of the AO EWH signal is 2.5-times
(1.3-times, for geoid heights) larger than the respective H signal,
the relative AO errors are smaller than the relative H errors if the
same absolute prediction error is reached.

A comparison of the two investigated methods based on their
performance on the test dataset in Fig. 12 reveals that whenworking
with geoid heights, the relative errors for AO and H achieved by
PCA (G) are about 20 % smaller than the associated pix2pix (G,1,5e-
5) errors. This indicates that here, the overfitting problem of the
pix2pix model seems to be larger than the problem due to the
overlapping AO and H signal subspaces in the case of the PCA-
based method.

When working with EWH data, a choice between the two meth-
ods seems less obvious, since the relative AO error of pix2pix (E,1,5e-
5) is 12 % smaller than the corresponding PCA (E) error, but the
relative H error of PCA (E) is 19 % smaller than the corresponding
pix2pix (E,1,5e-5) error. However, the pix2pix (E,1,5e-5) error curves
do not seem to have converged after 1000 epochs yet, i.e. a longer
training could lead to a further improvement of the pix2pix model.

5 CONCLUSIONS AND OUTLOOK
In this paper, we investigate the performance of two signal separa-
tion methods, one based on PCA (cf. section 3.1) and one based on
the pix2pix cGAN neural network architecture (cf. section 3.2), on
the task of separating atmosphere/ocean and hydrological spatial-
temporal gravity signals from their sum. Both methods were shown
to predict the two signal components at a signal-to-noise ratio of
> 1, at an error level between 27 and 81 % of the respective signal,
depending on the specific separation model.

In general, two types of errors could be identified to contribute
to the prediction errors in the considered signal separation task:

(1) parts of the input signal that are assigned to the wrong signal
component, which we call "assignment errors"

(2) parts of the input signal that are not assigned to any of the
two signal components, which we call "absent signal errors"

In the case of the pix2pix method, the prediction errors are dom-
inated by the first error type, indicating that the total input signal
energy becomes distributed to the two signal components. This
was learned solely based on the training data, as no correspond-
ing constraint on the sum of the predicted components has been
applied.

In the case of the PCA method, which of the two error types
dominates the prediction errors depends on the relationship of the
signal subspaces used to represent the signal variability of the two
signal components: If the subspaces show a considerable overlap,
which is the case if the two signal components are spatially highly
correlated, the first error type dominates. The opposite is true if
the overlap is negligible. In the framework of our analysis, the
first situation has been observed if gravity signals expanded in
geoid height grids were considered, while the second situation was
present when working with EWH grids.

The choice of the gravity field functional to which the SH gravity
coefficients are expanded also has a major impact on the pix2pix
method: As they are dominated by the large-scale signal compo-
nents, using geoid height grids introduces significant correlations
among the pix2pix training samples, leading to a strong overfitting
effect. This effect is resolved by using EWH data grids which are
more strongly dominated by the short-scale signal structures.

In general, we find the very different behavior of both separa-
tion methods when applied to either EWH or geoid height data
noteworthy, because both quantities have been derived from the
same input model data (ESA ESM). Therefore, from a theoretical
point of view EWH and geoid height contain the same information,
but only the spectral components are differently weighted.

For the further development of the two signal separation meth-
ods, we recommend the expansion of the SH gravity data to EWH
grids, as this has the advantage to both avoid the overfitting prob-
lem in the case of the pix2pix method, as well as the problem of
correlated AO and H EOFs in the case of the PCA method. To im-
prove the predictive ability of the algorithms, we suggest to include
more data in the model building stage, which in the case of the PCA
method would increase the dimensionality of the signal subspaces,
such that they become representative of a larger possible variabil-
ity of the two signal components. Also in the pix2pix method, an
augmentation of the training dataset is expected to further reduce
the prediction errors.
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In order to develop the algorithms towards signal separation
in real satellite gravity data, the considered signal separation task
needs to be extended to include a larger number of individual
gravity signal components to be separated, including a noise com-
ponent. In this context, we suggest to subtract geophysical model
predictions for the larger-amplitude signal components before the
separation step, in which the (residual) signal components are then
estimated. This would especially reduce the "assignment errors" of
smaller-amplitude components relative to their signal amplitude.

Regarding the pix2pix neural network method, section 4.2 re-
vealed that a hyperparameter configuration that provides a good
signal separation performance on the test dataset does not neces-
sarily also provide an equilibrated state between the discriminator
and the generator part of the GAN architecture. In particular, a
divergence of the GAN losses with decreasing values for the dis-
criminator and increasing values for the generator was observed.
For the considered task, the numerical difference between the gen-
erated and true output is the primary performance measure, while
the visual plausibility of the generated output as it is judged by
the discriminator is secondary. This raises the question whether
the optimization of the GAN loss terms regulating the balance be-
tween discriminator and generator contributes at all to the signal
separation performance of the considered networks. Therefore, we
recommend to test simpler architectures such as U-Nets for our
task in future studies.

Further questions to be addressed in the future regarding a neu-
ral network-based signal separation method comprise investigating
the impact of various sampling strategies besides the slicing of the
data at constant latitudes as done in the present study, assessing
the role of individual signal features such as specific frequencies
or spatial patterns in the training process, as well as specifically
designing the algorithm to address the characteristics of the consid-
ered spatial-temporal dataset, involving the introduction of more
prior knowledge to the system in the form of additional loss terms.
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