

Comparison of different numerical modelling techniques to evaluate high-speed crushing behaviour of fibre-reinforced composites

Christian Pohl¹, Huifang Liu², Drew E. Sommer², Daniel Thomson², Justus Hofmann², Nik Petrinic² ¹ Technical University of Munich, TUM Department of Aerospace and Geodesy, Chair of Carbon Composites, Germany

² Department of Engineering Science, University of Oxford, Oxford

18th European Mechanics of Materials Conference, April 4th-6th, 2022, Oxford

Agenda

1 Motivation

2 Experimental approach

- 3 Numerical representation
- 4 Evaluation of numerical predictions
- 5 Conclusions and outlook

Motivation

- Elevated strain rates change the mechanical response of fibre-reinforced composites
- The loading rate dependency of material properties plays a role in axial crushing
- Crushing has so far mainly been evaluated on component-level structures

→ Coupon crushing experiments and accompanying simulation campaign to improve understanding of failure behaviour in composites!

Fig. 1: Dynamic crushing test of a carbon/aramid-epoxy laminate omega profile [1]

1 Motivation

2 Experimental approach

- 3 Numerical representation
- 4 Evaluation of numerical predictions
- 5 Conclusions and outlook

Experimental approach – Specimens

- A Through-Thickness Trigger (TTT) specimen geometry proposed by Bru et al. was adapted [2]
- A trigger angle of 20° and a free length of 10 mm showed the most promising results in preliminary studies
- Manufactured from carbon-epoxy material -IM7/8552 with a 2 mm thick quasi-isotropic laminate ([90°/0°/±45°]₂₅]

Fig. 2: Dimensions and mounting of adapted TTT specimen

Experimental approach – Test setup

- Tests on drop-tower setup with 15.3 kg impactor at 1.5 m/s impact velocity
- 2 high-speed cameras at 120,000 fps
- Analysis of obtained images via Digital-Image-Correlation
- The force was computed by differentiating the measured displacement twice and multiplying by the drop weight mass
- Smoothing of signals with 3 kHz sliding mean filter

Pohl et al. | 18th European Mechanics of Materials Conference | April 4th 2022

Fig. 3: Measures of adapted TTT specimen

1 Motivation

2 Experimental approach

3 Numerical representation

4 Evaluation of numerical predictions

5 Conclusions and outlook

Numerical representation – Input data

- IM7/8552 has been thoroughly studied under quasi-static and dynamic loads
- All inter- and intralaminar elastic properties, strengths and fracture toughnesses were characterized in previous studies

Fig. 4: Double-Edge-Notched-Tension specimens' axial (left) and shear strain fields under quasi-static (top) and high-rate loading conditions [3]

Numerical representation – Intralaminar model

- LS-DYNA selected as solver in underlying project
- *MAT_ENHANCED_COMPOSITE_ DAMAGE (*MAT_058) is used due to stable performance
- Included intralaminar fracture toughnesses to represent damage evolution
- Quasi-static (QS) and fully strain-rate-dependent (HR) material definition applied in separate models
- Implemented strain rate increase factor of:

$$f(\dot{\varepsilon}) = 1 + (K \cdot \dot{\varepsilon})^{\frac{1}{n}}$$
[4]

Pohl et al. | 18th European Mechanics of Materials Conference | April 4th 2022

Fig. 5: Schematical stress-strain behavior of *MAT_058 in fiber tensile direction

Numerical representation – Interlaminar model

- *MAT_COHESIVE_MIXED_MODE_ELASTO-PLASTIC_RATE (*MAT_240) or equivalent TIEBREAK model (Option 14) is used to represent delamination failure
- Experimental data from literature were used for mode I and II crack opening calibration [5,6]
- Quasi-static (QS) and fully strain-rate-dependent (HR) material definition applied in separate models

Fig. 6: DCB deformation behavior and damage variable of *TIEBREAKcontact

Numerical representation – FE model

- Ply-by-ply model (16S) with cohesive interfaces or stacked sub-laminate model (4S) with TIEBREAK interfaces
- Aligned mesh in trigger zone to mitigate numerical noise
- Exploiting symmetry, fixture modelled as rigid
- Initial velocity and gravitational force applied to rigid drop weight, friction coefficient 0.3
- Same filter frequency as in experiments applied

Pohl et al. | 18th European Mechanics of Materials Conference | April 4th 2022

Fig. 7: Comparison of 16S model (left) with 4S model (right)

- 1 Motivation
- 2 Experimental approach
- 3 Numerical representation
- **4** Evaluation of numerical predictions
- 5 Conclusions and outlook

Evaluation of numerical predictions – Force-disp. curves

8000

Δ < 2*STDV		Max. Force (N)	Mean Force (N)	Max. Disp. (mm)
ЕХР	Value	6291	2950	6.57
	STDV	639	395	0.92
	сv	10.2%	13.4%	14.0%
SIM	16S_HR	3633	2204	8.57
	16S_QS	2233	1462	9.63
	4S_HR	7532	3629	5.05
	4S_QS	5069	2161	8.74

Tab. 1: Force and displacement statistics of TTT experiments and simulations

Pohl et al. | 18th European Mechanics of Materials Conference | April 4th 2022

Fig. 8: Force-displacement-diagram of TTT experiments and simulations

Evaluation of numerical predictions – Damage behaviour

- Experiments exhibit a combination of splaying in outer layers and fragmentation in inner layers
- Observed behaviour is in line with descriptions from literature [2]
- In simulations, the 4S response is too stiff, whereas 16S exaggerates the deformation

Pohl et al. | 18th European Mechanics of Materials Conference | April 4th 2022

Fig. 9: Lateral view on specimen crushing in experiment, 16S_HR (right) and 4S_HR simulation (lower picture)

Evaluation of numerical predictions – Strain rates

- Both, experiments and simulations indicate the existence of local strain rates 10 to 15 times above the nominal strain rate
- Justifies the application of numerically more costly strain-rate-dependent material definitions

Fig. 10: Comparison of strain rate field in loading direction at t = 0.4 ms for 4S_HR (left) simulation and experiment (right)

- 1 Motivation
- 2 Experimental approach
- 3 Numerical representation
- 4 Evaluation of numerical predictions
- **5** Conclusions and outlook

Conclusions and outlook

- Strain-rate-dependent material representation is necessary in highly dynamic composite applications
- 4S models provide very runtime-efficient predictions close to experimental results
- Further experiments with higher impact velocities on split-Hopkinson-Bars
- Comparison with solid element ply-by-ply models
- Further assessment of delamination using improved calibration of models

	Runtime (s)	Elements	
16S_HR	19883	23	3717
4S HR	938	3	3209

Tab. 2: Simulation runtime comparison (28 CPU Intel Xeon E5-2690 v3, LS-DYNA R11.1 MPP)

Thank you for your attention!

Questions?

[7]

References

[1] Pieper T. Erweiterung und Validierung von Faserverbund-Materialkarten zur simulativen Beschreibung des Crushingverhaltens. Semester Thesis. Technical University of Munich; 2021. [2] Bru T, Waldenström P, Gutkin R, Olsson R, Gaurav MV. Development of a test method for evaluating the crushing behavior of unidirectional laminates. Journal of Composite Materials 2017; Vol. 51 (29) 4041-4051. Kuhn P, Catalanotti G, Xavier J, Ploeckl M, Koerber H. Determination of the crack resistance curve for intralaminar fiber tensile failure [3] mode in polymer composites under high rate loading. Composite Structures 2018;204:276-87. [4] Koerber H. Mechanical response of advanced composites under high strain rates. PhD Thesis; Porto; University of Porto; 2010. [5] Czabaj MW, Ratcliffe JG. Comparison of intra and interlaminar mode-I fracture toughness of unidirectional IM7/8552 graphite/epoxy composite. Composites Science and Technology 2013;89:15-23. O'Brien KT, Johnston WM, Toland GJ. Mode II interlaminar fracture toughness and fatigue characterization of a graphite epoxy [6] composite material. 2010. [7] Dynamore Webinar Composite-Berechnung, https://www.dynamore.de/de/download/presentation/ dokumente/copy_of_download-Envyo%20und%20Composite-Berechnung/copy5_of_02_DYNAmore_ Webinar Optimierung mit LS-OPT 03 2017, 2017