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- Elevated strain rates change the mechanical 

response of fibre-reinforced composites

- The loading rate dependency of material 

properties plays a role in axial crushing

- Crushing has so far mainly been evaluated on 

component-level structures

 Coupon crushing experiments and 

accompanying simulation campaign to improve 

understanding of failure behaviour in composites!

Motivation
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Fig. 1: Dynamic crushing test of a 

carbon/aramid-epoxy laminate omega 

profile [1]
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- A Through-Thickness Trigger (TTT) specimen 

geometry proposed by Bru et al. was adapted [2]

- A trigger angle of 20° and a free length of 10 mm 

showed the most promising results in preliminary 

studies

- Manufactured from carbon-epoxy material 

IM7/8552 with a 2 mm thick quasi-isotropic 

laminate ([90°/0°/±45°]2s]

Experimental approach – Specimens
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Fig. 2: Dimensions and mounting of adapted TTT specimen



- Tests on drop-tower setup with 15.3 kg impactor at 

1.5 m/s impact velocity

- 2 high-speed cameras at 120,000 fps

- Analysis of obtained images via Digital-Image-

Correlation

- The force was computed by differentiating the 

measured displacement twice and multiplying by 

the drop weight mass

- Smoothing of signals with 3 kHz sliding mean filter

Experimental approach – Test setup
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Fig. 3: Measures of adapted TTT specimen
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- IM7/8552 has been thoroughly studied under 

quasi-static and dynamic loads

- All inter- and intralaminar elastic properties, 

strengths and fracture toughnesses were 

characterized in previous studies

Numerical representation – Input data 
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Fig. 4: Double-Edge-Notched-Tension specimens‘ axial (left) and shear 

strain fields under quasi-static (top) and high-rate loading conditions [3] 



- LS-DYNA selected as solver in underlying project

- *MAT_ENHANCED_COMPOSITE_ DAMAGE 

(*MAT_058) is used due to stable performance

- Included intralaminar fracture toughnesses to

represent damage evolution

- Quasi-static (QS) and fully strain-rate-dependent 

(HR) material definition applied in separate models

- Implemented strain rate increase factor of:

𝑓 ሶ𝜀 = 1 + (𝐾 ∙ ሶ𝜀)
1

𝑛 [4]

Numerical representation – Intralaminar model
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Fig. 5: Schematical stress-strain behavior of *MAT_058 in fiber tensile 

direction

ε

σ

~ Gc
f+



- *MAT_COHESIVE_MIXED_MODE_ELASTO-

PLASTIC_RATE (*MAT_240) or equivalent 

TIEBREAK model (Option 14) is used to represent 

delamination failure

- Experimental data from literature were used for 

mode I and II crack opening calibration [5,6]

- Quasi-static (QS) and fully strain-rate-dependent 

(HR) material definition applied in separate models

Numerical representation – Interlaminar model
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Fig. 6: DCB deformation behavior and damage variable of *TIEBREAK-

contact



- Ply-by-ply model (16S) with cohesive interfaces or 

stacked sub-laminate model (4S) with TIEBREAK 

interfaces

- Aligned mesh in trigger zone to mitigate numerical 

noise

- Exploiting symmetry, fixture modelled as rigid

- Initial velocity and gravitational force applied to rigid 

drop weight, friction coefficient 0.3

- Same filter frequency as in experiments applied

Numerical representation – FE model
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Fig. 7: Comparison of 16S model (left) with 4S model (right)
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Evaluation of numerical predictions – Force-disp. curves

Fig. 8: Force-displacement-diagram of TTT experiments and simulationsTab. 1: Force and displacement statistics of TTT experiments and simulations

Max. Force (N) Mean Force (N) Max. Disp. (mm)

E
X

P

Value 6291 2950 6.57

STDV 639 395 0.92

CV 10.2% 13.4% 14.0%

S
IM

16S_HR 3633 2204 8.57

16S_QS 2233 1462 9.63

4S_HR 7532 3629 5.05

4S_QS 5069 2161 8.74
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- Experiments exhibit a combination of splaying in 

outer layers and fragmentation in inner layers

- Observed behaviour is in line with descriptions from 

literature [2]

- In simulations, the 4S response is too stiff, whereas 

16S exaggerates the deformation

Evaluation of numerical predictions – Damage behaviour
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Fig. 9: Lateral view on specimen crushing in experiment, 16S_HR (right) and

4S_HR simulation (lower picture)



- Both, experiments and simulations indicate the 

existence of local strain rates 10 to 15 times above 

the nominal strain rate

- Justifies the application of numerically more costly 

strain-rate-dependent material definitions

Evaluation of numerical predictions – Strain rates
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Fig. 10: Comparison of strain rate field in loading direction at t = 0.4 ms for

4S_HR (left) simulation and experiment (right)
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- Strain-rate-dependent material representation is

necessary in highly dynamic composite applications

- 4S models provide very runtime-efficient predictions

close to experimental results

- Further experiments with higher impact velocities on 

split-Hopkinson-Bars

- Comparison with solid element ply-by-ply models

- Further assessment of delamination using improved

calibration of models

Conclusions and outlook

Pohl et al. | 18th European Mechanics of Materials Conference | April 4th 2022 17

Runtime (s) Elements

16S_HR 19883 23717

4S_HR 938 3209

Tab. 2: Simulation runtime comparison (28 CPU 

Intel Xeon E5-2690 v3, LS-DYNA R11.1 MPP)
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Thank you for your

attention!

[7]

Questions?
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