
Professorship of Lunar and Planetary
Exploration Technologies
Prof. Dr.-Ing. Philipp Reiß

Term Paper
Hard- and Software Development of a
Moon Guiding System for Telescopes

LPE SA-2023/07
Author:

Tobias Kurz

Supervisor: Prof. Dr. Detlef Koschny

Professorship of Lunar and Planetary
Exploration Technologies

Technical University of Munich

Professorship of Lunar and Planetary
Exploration Technologies
Prof. Dr.-Ing. Philipp Reiss

LPE-Nummer: SA-2023/07

Titel der Arbeit: Hard- and Software Development of a Moon Guiding System for
Telescopes

Autor: Tobias Kurz

Matrikelnummer: 03770864

Erklärung

Mir als vertraulich genannte Informationen, Unterlagen und Erkenntnisse werde ich nach
meiner Tätigkeit am Lehrstuhl nicht an Dritte weitergeben.
Ich erkläre mich außerdem damit einverstanden, dass meine Bachelor-, Semester-, Master-,
oder Diplomarbeit von der Professur auf Anfrage fachlich interessierten Personen, auch über
eine Bibliothek, zugänglich gemacht wird, und dass darin enthaltene Ergebnisse sowie dabei
entstandene Entwicklungen und Programme von der Professur für Lunare und Planetare
Explorationstechnologien uneingeschränkt genutzt werden dürfen. (Rechte an evtl.
entstehenden Programmen und Erfindungen müssen im Vorfeld geklärt werden.)
Ich erkläre außerdem, dass ich diese Arbeit ohne fremde Hilfe angefertigt und nur die in dem
Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe.

Ottobrunn, den

Unterschrift

31.01.2024

Kuz

Hard- and Software Development of a
Moon Guiding System for Telescopes

Tobias Kurz

Zusammenfassung

Diese Semesterarbeit befasst sich mit der Hard- und Softwareentwicklung eines Sys-
tems zum Nachführen des Mondes mithilfe eines motorisierten Teleskopstativs. Ziel
ist es, die präzise Nachführung des Mondes, mithilfe kommerziell erhältlicher Kompo-
nenten, für mehr Menschen möglich zu machen. Basierend auf der Auswertung von
Bildern einer Kamera mithilfe eines Raspberry Pi wird der Mond im Bild erkannt. Bei
Abweichungen der Position wird ein Steuersignal mithilfe der ST-4 Schnittstelle and die
Montierung übermittelt.

Eine umfassende Bauanleitung der Hardware, sowie eine Anleitung zur Nutzung der
Software sind zur Verfügung gestellt. Umfangreiche Tests zu unterschiedlichen Mond-
phasen wurde durchgeführt und die Zuverlässigkeit des Systems nachgewiesen. Ver-
schiedene Profile wurden anhand einer Parameterstudie erstellt und getestet. Das
System ist flexibel und modular gestaltet und ermöglicht somit einen hohen grad an
Anpassbarkeit sowohl in der Software als auch in der Hardware.

Page III

Hard- and Software Development of a
Moon Guiding System for Telescopes
Tobias Kurz

Page IV

Hard- and Software Development of a
Moon Guiding System for Telescopes

Tobias Kurz

Abstract

This term paper focuses on the hardware and software development of a system for
guiding a motorized telescope mount to follow the Moon. The objective is to enable
precise lunar guiding with commercially available components, making it accessible
to more people. The system identifies the Moon in images captured by a camera by
utilizing a Raspberry Pi. When deviations in the Moon’s position are detected, a control
signal is transmitted to the mount via the ST-4 interface.

Comprehensive construction instructions for the hardware along with a guide for soft-
ware usage are provided. Extensive tests were conducted during various lunar phases
to demonstrate the system’s reliability. Different profiles were created and evaluated
through a parameter study. The system is designed to be flexible and modular, offering
a high degree of adaptability in both software and hardware aspects.

Page V

Hard- and Software Development of a
Moon Guiding System for Telescopes
Tobias Kurz

Page VI

Hard- and Software Development of a
Moon Guiding System for Telescopes

Tobias Kurz

Contents

1 INTRODUCTION 1

2 HARDWARE 3

2.1 Requirements 3

2.2 System Overview 4

2.3 Computing Unit 4

2.4 Camera and Lens 5

2.5 Switching Unit and Wiring 6

2.6 Display 7

2.7 Case 7

2.8 Hardware Integration and Preparation 8

2.9 Assembly 10

3 SOFTWARE 13

3.1 Software Architecture 13

3.2 Camera Feed Integration 15

3.3 Moon Detection 15

3.4 Signal Output 17

3.5 Error Mitigation 17
3.5.1 Handling Clouds 17
3.5.2 Other Error Mitigation Measures 19

3.6 Challenges 21

4 TESTING AND DEVELOPMENT 25

4.1 Moon Detection 25

4.2 Relay Actuation and Steering 25

4.3 Integrated System 27

5 RESULTS 29

5.1 Discussion 30

Page VII

Hard- and Software Development of a
Moon Guiding System for Telescopes
Tobias Kurz

6 CONCLUSION AND OUTLOOK 31

BIBLIOGRAPHY 31

A USER MANUAL 35

A.1 Installation 35

A.2 Usage 36

A.3 Troubleshooting 39

B HARDWARE 41

C SOFTWARE OVERVIEW 45

C.1 Files 46

C.2 Classes 47

C.3 Functions 47

C.4 Test Results 51

Page VIII

Hard- and Software Development of a
Moon Guiding System for Telescopes

Tobias Kurz

List of Figures
Fig. 2–1: System diagram 4
Fig. 2–2: ST-4 connection overview 6
Fig. 2–3: Schematic of GPIO connections on the Raspberry Pi 7
Fig. 2–4: Picture of modified RJ12 cable 8
Fig. 2–5: Picture of modified casing 8
Fig. 2–6: Picture of modified GPIO extension 9
Fig. 2–7: Picture of custom acrylic glass plate 9
Fig. 2–8: Hardware parts overview 11
Fig. 2–9: Step four of the assembly 12

Fig. 3–1: Misalignment error illustration 18
Fig. 3–2: Test of cloud mode none 19
Fig. 3–3: Test of cloud mode repeat 20
Fig. 3–4: Plot of guiding error 21
Fig. 3–5: Plot of guiding error with sticky detection 22

Fig. 4–1: Relay wiring set-up for testing purposes 26
Fig. 4–2: Testing Set-Up 27
Fig. 4–3: Display output of early test 27

Fig. 5–1: Successful guiding test 29
Fig. 5–2: Long duration test 30

Fig. 1–1: Complete Moon guider assembly 35
Fig. 1–2: Moon guider info screen 37

Fig. 2–1: Close-up of relay with connections 41
Fig. 2–2: Step one of the assembly 41
Fig. 2–3: Step two of the assembly 42
Fig. 2–4: Step three of the assembly 42
Fig. 2–5: Step four of the assembly 43

Fig. 3–1: Plot of guiding oscillations after varying buffer size 51
Fig. 3–2: Plot of guiding oscillations after varying pulse multiplier 51

Page IX

Hard- and Software Development of a
Moon Guiding System for Telescopes
Tobias Kurz

Page X

Hard- and Software Development of a
Moon Guiding System for Telescopes

Tobias Kurz

List of Tables
Tab. 3–1: Parameter Overview 14

Tab. 1–1: Parameter Matrix 38

Tab. 3–1: File Overview 46
Tab. 3–2: Class initializations 47
Tab. 3–3: Functions 47

Page XI

Hard- and Software Development of a
Moon Guiding System for Telescopes
Tobias Kurz

Page XII

Hard- and Software Development of a
Moon Guiding System for Telescopes

Tobias Kurz

Symbols and Formulas

Symbol Unit Description

αd rad viewing angle

αH rad horizontal viewing angle

αV rad vertical viewing angle

β rad angle of sensor diagonal

d mm sensor diameter

f mm focal length

lH pixels horizontal pixel count of sensor

lV pixels vertical pixel count of sensor

φ rad misalignment angle

Page XIII

Hard- and Software Development of a
Moon Guiding System for Telescopes
Tobias Kurz

Page XIV

Hard- and Software Development of a
Moon Guiding System for Telescopes

Tobias Kurz

COTS Commercial Off-The-Shelf

DEC Declination

FPS Frames per Second

GPIO General Purpose Input/Output

HDMI High Definition Multimedia Interface

LPE Professorship of Lunar and Planetary Exploration Technologies

RA Right Ascension

RJ12 Registered Jack (standardized 6-pin connector)

ST-4 Star Tracker version 4

Page XV

Hard- and Software Development of a
Moon Guiding System for Telescopes
Tobias Kurz

Page XVI

Introduction

1 Introduction

The exploration of celestial bodies, particularly the Moon, has been a subject of sig-
nificant interest in the field of astronomy and space science. This thesis presents the
development of a Raspberry Pi based system designed to guide amateur-sized tele-
scopes for the observation of the unilluminated side of the Moon. The primary objective
of this research is to facilitate the detection of impact flashes caused by small asteroids,
a phenomenon observable from Earth.

While existing commercial systems offer capabilities in tracking the stars, they lack of
functionality for guiding telescopes to follow the Moon’s trajectory. This gap necessi-
tates the development of a specialized system capable of providing precise and con-
sistent guiding of the Moon. The system developed for this thesis aims to address this
need by integrating a Raspberry Pi with a camera to autonomously guide a telescope
mount, thereby keeping the unilluminated part of the Moon within the field of view for ex-
tended periods. The methodology involves a comprehensive approach encompassing
hardware design, software development, and empirical testing. The hardware compo-
nent entails designing and integrating a system, which can be attached to a standard
telescope mount. On the software front, a Python-based tool is for detecting the Moon
and issuing corrective commands to the mount is developed.

The system provides a cost-effective and efficient solution and therefore making the
research on asteroid impacts on the Moon more accessible.The implications of this
study extend beyond observational astronomy, potentially aiding in the understanding
of near-Earth space and its asteroid environment.

Page 1

Introduction

Page 2

Hardware

2 Hardware

Motorized telescope mounts are used by both amateur and professional astro-photographers
to capture sharp images of the night sky. This is made possible due to the mount ro-
tating in a direction opposite to that of Earth’s rotation, thereby compensating for it.
Without this counter-rotation, stars would appear as streaks in images with exposure
times of just a few seconds. The research team for Lunar and Planetary Exploration
Technologies (LPE) intends to use such a telescope mount to guide a camera aimed
at the Moon. As the Moon orbits in the same direction as Earth’s rotation, it appears
to move slightly slower across the night sky compared to the background stars. There-
fore, some commercial mounts, lacking a dedicated Moon mode, would lose track of
the Moon after some time. Additionally, minor misalignments of the mount from the
Earth’s rotational axis, as well as the fact that the orbit of the Moon is slightly tilted,
can lead to significant long-term guiding errors. This is where the Moon guider system
comes into play. Using the standard ST-4 interface, which most commercial mounts are
equipped with, correction signals will be transmitted to maintain the Moon in the frame
during tracking periods extending over several hours. This leads to a set of specific
requirements that need to be defined.

2.1 Requirements

Affordability
The System should be comprised of commercial off-the-shelf (COTS) components. To
enable data collection through crowd sourcing, access must be made easy. Ideally,
components that are already available within the astro-community should be utilized.

Usability
To maximize the system’s user-friendliness, achieving a compact design is impera-
tive. The guiding hardware should be designed for seamless mounting onto a standard
telescope mount, requiring minimal modification to the mount itself. By consolidating
all components within a small form factor, the end-user should be able to effortlessly
secure it in place, connect the ST-4 cable, and be ready to operate without any compli-
cations.

Simplicity
The system should not be overly complex. Users should have the ability to easily
replace or integrate individual components as needed. The system’s functions must
also be clear and structured, such that it can be used by users without specialized
background knowledge.

Precision
To ensure precise tracking of the lunar movement, the system should not deviate too
much from the true position. This way the camera keeps the Moon in sight, even after

Page 3

Hardware

long durations of guiding. As a rule of thumb, a maximum deviation from the moon
center of a few percent of the lunar diameter is aimed for.

2.2 System Overview

The system consists of a camera and lens combination to capture pictures of the Moon
in regular time intervals. A computing unit (Raspberry Pi) then uses this image to
find the position of the Moon. If a deviation from the predefined position in the image
is detected, a correction command is sent to the switching unit (relay board). This
position is set by the user via a button press. The command is then turned into a signal
pulse and transmitted through the ST-4 port of a commercial telescope mount, where
is interpreted as a steering correction. Figure 2–1 shows a schematic of this process.

Fig. 2–1: Diagram of the system and its operations

The following will explain the components comprising the system in detail and the key
decisions that significantly contributed to their selection.

2.3 Computing Unit

To control the guiding mount, a computing unit capable of processing high quality im-
ages is required. It should also allow for a straightforward connection of external de-
vices such as relays and buttons. A Raspberry Pi fulfils both of these requirements
and is additionally simple and cost-effective. When guiding out in the field, it can even
be powered by a mobile power bank. For this project, the decision was made to use
the Model 4B, as it provides sufficient memory as well as a reasonably fast processor.
Specifically, an older model was intentionally chosen to avoid potential driver compat-
ibility issues that might arise with newer models. However, newer models can still be
utilized if needed.
Caution is advised when using older models, as weaker processors may potentially
lead to reduced system performance due to the computationally intensive image pro-
cessing tasks.
Considerations to use an Arduino based system have been made but quickly dismissed
to to the low performance of the processor.

Page 4

Hardware

2.4 Camera and Lens

Since the lunar tracking relies solely on optical feedback, the quality of the image re-
ceived by the computing unit is crucial. Both the camera’s resolution and the magnifi-
cation factor of the lens play a significant role.
While there are numerous camera options available for the Raspberry Pi, most are de-
signed for surveillance or similar applications with a low image quality and wide field of
view. As a result, the selection of high-quality cameras is limited to only a few manu-
facturers. For this project, the decision was made to utilize the Sertronics Raspberry
Pi High Quality Camera, which features a resolution of 4056 x 3040 (lH x lV) pixels
and allows for the mounting of various lenses due to its use of the standard camera
C-Mount.[1] This also plays into the requirement of affordability as the user may po-
tentially be able to utilize pre-existing lenses and thus save on additional equipment
purchases.
To achieve the required precision, the angular diameter of the apparent Moon on the
night sky has to be taken into consideration. This angle changes with the time of day
and year since the Moon’s orbit is slightly elliptic and the earth’s rotation contributes
to a distance change to the Moon as well.[2] As an approximation, a median apparent
angular diameter of 2000 arc seconds shall be used. To design the system, a precision
of 1% of the apparent Moon diameter and therefore a precision of 20” is aimed for.
When reviewing different lenses, which fit on the HQ Camera, the viewing angle has
to be considered to fulfil this design choice. The viewing angle αd of a lens can be
calculated by using equation 2–1.

αd = 2 · arctan

(
d

2 · f

)
(2–1)

Here d is the diagonal length of the sensor in millimetres and f is the focal length of
the lens, also in millimetres.
Furthermore the horizontal angle αH and the vertical angle αV can be calculated by
using the angular relations, with β being the angle of the diagonal of the sensor:

αH = sin β · αd (2–2) αV = cos β · αd (2–3) β = arctan(lH/lV) (2–4)

Using the dimensions of the sensor with the requirement of at least one pixel per 20”,
the maximum viewing angles of the camera and lens combination can be calculated to
αH ,max = 81120” and αV ,max = 60800”.
Solving formula 2–1 for f and inserting either αH or αV results in a minimum focal
length of about 15.75 mm with the provided sensor diameter d of 7.9 mm.[1]
After these considerations a lens with a focal length of 50 mm was chosen. This cre-
ates a margin of error in the moon detection of about 3 pixels of uncertainty to reach
the aimed-for precision of one percent of the Moon diameter, which seemed like a
reasonable amount.

Page 5

Hardware

2.5 Switching Unit and Wiring

To control the guiding mount, its ST-4 input is utilized. This is an interface commonly
found on most astro-cameras and guiding mounts. ST-4 stands for Star Tracker ver-
sion 4 and dates back to the 1980s, where this kind of guiding interface was first
introduced.[3] It is used to steer the mount to one of the four directions (RA+, RA-,
Dec+, Dec-) to make small adjustments to the mount’s movement and keep the target
in the desired position. Since it has never been properly standardized, the exact wiring
of the connection has to be adapted to the specific guiding model. In the following the
most common architecture is provided, which is also used for this project.[3]

Fig. 2–2: Overview of the most common ST-4 connection layout, adapted a RA change
in the northern hemisphere

The ST-4 interface features a standard 6-pin RJ12 connector. Only five of these pins
are used by the interface, with four for each direction and one being the common pin
(ground). To make a correction in a specific direction, the corresponding pin has to be
connected to the common pin, closing the circuit. An overview of the most common
layout is provided in figure 2–2. Note that the RA is swapped when using the system
in the southern hemisphere.
To establish the connection between the direction pin and the common pin as needed,
a relay board is used, which can be controlled by the computing unit. The requirements
for this board are that it should have four relays, be compatible with the Pi and have a
compact form factor. Additionally, it should be capable of a reasonably fast switching
frequency to enable smaller direction adjustments. For this project a 5 V 4-channel
opto-coupler relay module was used due to its low price, high availability and compati-
bility with the Raspberry Pi. Other relay types like semiconductor relays might also be
used due to the low operating voltages on the connections.

The Raspberry Pi communicates with external expansion boards most easily through
the integrated GPIO pins located on top of the board. These pins can be controlled as
needed by the Pi and appropriate software. However, there are certain limitations here
as not all pins offer the same capabilities and possibilities. Additionally, for this project,
a significant portion of the pins is already occupied by communication with the screen.
While the camera input is received via the flat ribbon interface, the remaining pins are
available for connecting the button and the relay board. Since the display occupies
all of the voltage supply pins of the GPIO interface as well, a second connection had
to be soldered to one of the 5V-pins to supply the relay board with power (see 2.8).
Due to the low power requirements of both the board and the display, the Pi can easily

Page 6

Hardware

Fig. 2–3: Schematic of the wiring connections from the Raspberry Pi via the relay board
to the ST-4 connector. The numbers at the ST-4 interface refer to the connections shown
in figure 2–2

supply power to both extensions from a single connection without any issues. Figure
2–3 provides a schematic of the wiring used in this project. Other hardware choices
may lead to a different pin layout. Here the relays connect position 1 and 2 when not
powered. If the relay is activated, position 2 and 3 are connected, closing the circuit for
a given direction.

2.6 Display

To view the current camera output as well as the telemetry of the moon detection some
a screen is used. While a normal monitor can be attached to the Raspberry Pi via
HDMI cable, the system should provide its own screen to be usable in more remote
locations. There are many screens available to choose from so for this project a small
3,5 inch model was used.[4] This is the same size as the Pi itself, which makes it fit
nicely into the case.
The display will be covered by a protective sheet of acrylic glass in the end so the
touch-screen functionality of the display will not be of much use. However since almost
all of the displays with this size feature touch capabilities, there is no difference in cost.

2.7 Case

For the selection of the case, the decision was made to opt for an aluminium case
from the brand Innomaker. The robustness of the material allowed for drilling holes
to accommodate the button and camera attachment while still maintaining sufficient
strength to securely fasten the entire case to a standard telescope rail. Plastic cases
might not be sturdy enough to support the weight of the camera and lens. The design of
the case allows for upward expansion through the use of spacer screws, although this
was not necessary in this particular case. In addition, the enclosure provides enough
airflow to prevent the electronics from overheating.

Page 7

Hardware

To meet other requirements, such as different mounting mechanisms or alternative
hardware, it is advisable to consider a custom 3D-printed case.

2.8 Hardware Integration and Preparation

The hardware integration for this project proved to be a challenge. As the entire system
is intended to function as a single unit, all the hardware needs to fit inside the casing.
The construction of the case requires mounting the Pi at the bottom. Logically, the
screen has to be mounted on top for visibility. Consequently, there is no other space
available for the rest of the electronics, including the relay board, except between these
two components. The use of a GPIO pin extender for the Raspberry Pi allows for
creating a gap of approximately 2 cm between the Pi and the screen, which is just large
enough to accommodate the relays. Likewise, the cables, button, and the head of the
screw, which is used to secure the camera to the case, can fit inside the enclosure.
The connection to the ST-4 interface of the mount is designed in such a way, that the
male connector is already provided by the guiding system. This eliminates the need for
an additional cable to connect the device and it can simply be plugged into the mount
for further use.
Preparing the relay board for assembly, the wire connections from the relay channels

to the ST-4 cable have to be established first. This was done by cutting standard Dupont
connector wires to length in order to use up as little space as possible. Instead of
routing all four ground wires separately to the ST-4 ground, they are connected directly
at the relay board. A close-up image of this can be found in appendix B, figure 2–1.
The colors of the cables are chosen to match the colors of the RJ12 interior cables,
aiding with connecting the ends later. Note that the colors of the wires do not match
with the connections from the relay board to the Raspberry Pi. Except for the black
ground-wire, the order of the colors is predefined by the attached Dupont-ribbon and is
therefore coincidental.

Fig. 2–4: Picture of the modified end
of the RJ12 cable for connection to the
relay

Fig. 2–5: Picture of the Moon guider
casing with holes for button and cam-
era screw drilled

Page 8

Hardware

To fit the relay wires, the exposed ends of the RJ12 cable wires are fitted with standard
Dupont pins. Shrink wraps are used to seal the solder joints (see figure 2–4). The
unused connection (here white) is sealed off.
Likewise, pins are also soldered to the wire ends of the button (see 2–8, part no. 8),
making them easier to connect to the Raspberry Pi.

As previously mentioned, two holes for each the camera screw and the button have to
be drilled into the side of case. In figure 2–5 the holes can be seen on opposite sides of
the case. For the button hole, some of the inside case edge is removed as well to fit the
tightening nut of the button. This is done by using a dremel or small files. Furthermore
the gap between two of the ribs of the bottom plate has to be widened to fit a second
camera screw (see 2–8, part no. 4), for securing the case to a standard telescope rail.
Drilling this hole is a challenge since the ribs of the plate tend to separate over the drill
as soon as pressure is applied. Using two wooden boards and clamping them with the
plate sandwiched in between fixes the issue.

To supply the relay board with power one of the 5 Volt GPIO pins of the Raspberry Pi
is forked off. This is done by soldering an extra pin in an angle to the corresponding
location on the GPIO extension. Additionally, a protecting shrink wrap is fitted around
the neighbouring pin to prevent accidental contact. Since the extension is only used to
bridge the connections up to the display, the remaining pins are sawed off to provide
room for the relay board to be connected. Figure 2–6 shows the modified part.

Lastly a piece of acrylic glass is cut to size as a replacement for the opaque original
top cover of the case. For this, the cover of an old CD-case was re-purposed. Holes
were drilled into the edges for the mounting screws to attach. Cutting and drilling under
water can prevent cracking of the thin plastic. The finished glass plate is depicted in
figure 2–7. While this is optional for the functionality of the moon guider, it serves as a
protection for the components.

Fig. 2–6: Picture of the modified GPIO
extension with soldered additional pin

Fig. 2–7: Picture of the custom made
acrylic glass top cover

Page 9

Hardware

After modifying the parts as described above, the assembly of the Moon guider system
can be performed. The multitude of all the parts needed for this are laid out in figure
2–8. In the top down view the parts are as numbered:

1. Case outer wall

2. Raspberry Pi

3. Camera, lens and ribbon cable

4. Case bottom plate with screw hole

5. 4-channel relay board

6. 3.5 inch display

7. Dupont cables

8. Button with soldered Dupont connectors and tightening nut

9. SD card for the Raspbarry Pi

10. Modified GPIO extension

11. Spacer screws and nut

12. Small screws to attach the Pi to the casing

13. 5/16 and 1/2 inch camera screw

14. Modified RJ12 cable

2.9 Assembly

The modular architecture of the case makes it easy to assemble from the bottom up.
In the following, the assembly process will be guided through step by step. Reference
pictures of the hardware after a completed step are given in figures 2–2 to 2–5 in
appendix B.

Step 1: Firstly the bottom plate of the case (4) is screwed to a standard telescope
rail using the 1/2 inch camera screw (13). A piece of insulating tape is added to the
head of the screw to prevent accidental short circuits of the Raspberry Pi, since it will
be very close to the underside of the circuit board. The short spacer screws (11) are
tightened to the bottom plate using the small screws (12). These are included with the
casing and will later secure the Raspberry Pi to the case.

Step 2: Before inserting the Raspberry Pi (2) into the case outer wall (2), it is recom-
mended to put in the 5/16 inch camera screw 13 first, as it can be hard to fit it in once
the circuit board is in place. The stack can now be placed on top of the assembled
bottom plate from step 1, such that the spacer screws fit the holes in the Raspberry
Pi board. They are then screwed tight with the remaining spacer screws. The spacer
near the USB-C interface of the Pi is extended by the spacer nut. It will later be used

Page 10

Hardware

Fig. 2–8: Top view of all the essential parts of the Moon guider system laid out and
numbered.

to hold the relay board in place.
Now the button (8) can be inserted and tightened. The chosen case provides an open-
ing with the right shape to fit the RJ12 cable (14) after some minor filing. Through this
hole the cable is threaded. This might take some effort since the assembly of pins is
wider than the hole, so they need to be put through one by one. Lastly the modified
GPIO extension (10) can be plugged in. Due to the small margins it is recommended
to plug in the connector (7) for the 5 V supply (here green) first.

Step 3: Now the camera (3) can be screwed in and tightened. The relay board (5) is
connected to the GPIO pins as well as the RJ12 pins. The button and the ribbon cable
of the camera are also connected to their corresponding interfaces on the Raspberry
Pi. For the exact wiring see section 2.5. In order to place the ribbon cable flat along
the bottom, the connector may need to be bent 90 degrees. Note that the relay board
is placed upside down on the rest of the assembly.

Page 11

Hardware

Step 4: By placing the rainbow-coloured Dupont-cables to the side between the relay
blocks and the GPIO extension, the relay board can be mounted flush into the casing.
When everything is tidy and the pin extensions are visible next to the relay board, it can
be fixed in place by screwing it into the spacer nut in the corner. As this is a very tight
fit, caution is advised to not break off any pins or pull out cables in the process.

Step 5: Now the screen (6) can be plugged into the GPIO extension, making the
system usable. To finish the assembly, the custom made acrylic glass plate is screwed
to the top of the case. Figure 2–9 shows the assembled product.

Fig. 2–9: Picture of the Moon guider with the relay board fully assembled

Page 12

Software

3 Software

To detect the Moon and send the adequate correction signals to the mount, several
intermediate steps are required, necessitating the use and development of tailored
processing software. Initially, the image of the Moon captured by the camera must be
analysed. The goal is to determine the position of the Moon on the image with the
highest precision possible. This determination should work reliably under various con-
ditions, including clouds, haze, changing lighting conditions, and different lunar phases.
To speed up the process, the images undergo preprocessing, such as noise reduction
through blurring and removal of color channels, not needed for the detection.

Based on the Moon’s position in the image, its deviation from the chosen reference
point is calculated and an appropriate signal is generated for the relay board. The
relay board then implements the signals from the Pi by connecting or disconnecting
the pins of the ST-4 interface of the mount accordingly. The mount then starts moving
the camera in the desired direction, providing visual feedback to the camera and the
cycle repeats. Meanwhile, both the camera image and useful data are transmitted and
displayed on the screen. A schematic representation of this process is depicted in
figure 2–1.

For signal processing and programming the functions, the programming language Python
is used. It is highly compatible with the Raspberry Pi and offers pre-built modules
that are utilized in the processing software. Furthermore, it is easy to use and widely
adopted, which favours the adaptation and further development of this system.

3.1 Software Architecture

To keep the software structured, a modular approach is realized. The individual func-
tions are grouped thematically and incorporated into separate Python files. This ap-
proach makes testing very convenient, as functions can easily be swapped and used
individually in a testing environment. It also helps keep the code organized for future
use and makes it easier to identify and fix errors.
Based around the main file, the circle detection, relay actuation and input parameters
are handled in separate entities. For ease of use, the user can specify these param-
eters in the config.ini file. Here different profiles can be created and edited. The
configuration file is then read by the program, which creates a class to incorporate all
of the chosen parameters. They can then be easily accessed in each of the respective
files.
The input parameters cover a wide variety of different functionalities and can be cate-
gorized into four groups: Guider settings, camera settings, image detection parameters
and general settings. By using this wide range of setting options, the program is flexible
and adaptable, making suitable for easy adaptation to possible variations in hardware
architecture. Table 3–1 provides a list of these settings.
For a more detailed look into all of the different components and documentation of the
software, see appendix C.

Page 13

Software

Tab. 3–1: Setting parameters for the Moon Guider. Can be specified in config.ini

Parameter Default Description

pin_ra_down
pin_ra_up
pin_dec_down
pin_dec_up
pin_button

19
13
6
26
16

Pins of the Raspberry Pi GPIO for connecting the
relay (± DEC, ± RA) and button. Pin numbers can
be found in the Raspberry Pi user manual of the
respective version. Depends on hardware set-up
and wiring.

margin 0.3 Margin of pixels in which the target can move with-
out relay activation

pulse_multiplier 0.1 Multiplication factor for calculating the dura-
tion of the relay pulse (deviation in pixels ·
pulse_multiplier)

cloud_mode repeat Determines how a loss of target due to clouds or
other obstructions will be handled.
None: No cloud handling, guiding will pause
repeat: Last set of pulses is repeated

record_buffer 100 Number of recorded steering signals to iterate. Only
relevant when cloud mode is set to repeat.

rotate 90 Rotates the directions of the detected deviation
clockwise to account for a angled camera. Possi-
ble rotation values are 0, 90, 180 or 270.

image_width
image_height

4056
3040

Dimensions of the image sensor in pixels

in_scale 1 Scales the camera image before processing.

image_buffer 6 Size of the image buffer of the camera stream.

blur 5 Kernel-size of the median blur applied to the image.

dp
param1
param2

2
300
50

Parameters for the HoughCirlces detection algo-
rithm. See section 3.3.

buffer_length 20 Number of target locations which will be averaged
to smooth out the guiding

overlay True Show white bar with information

out_scale 0.12 Scales the output image to adjust to different screen
sizes. Has no effect on accuracy.

show_cam_feed False Show high frame-rate camera stream on start-up.
Can be useful so point the guider.

do_relay_test False Perform a relay test on start-up to check for correct
wiring and configuration.

export_to_excel False Ability to save guider data to excel file after exiting.

Page 14

Software

3.2 Camera Feed Integration

The primary input for the Moon guider system is the camera image of the Moon,
which is captured using the Raspberry Pi camera. The camera is controlled using
the Picamera2 module, a pre-built Python library. This module allows for the configu-
ration of specific profiles for the camera, which then adjust settings for the subsequent
camera output. To ensure the highest precision of the guider, it is advisable to read
the maximum resolution of the sensor. Due to the slow movement of the Moon, at just
under 15 arc seconds per second, the system does not require an extremely high pro-
cessing speed. Most of this movement is even compensated by the standard motion
of the mount.
To increase the responsiveness of the system, the processing speed can be improved
by adjusting the image buffer count in the configuration. A higher buffer count enables
faster processing of image data and consequently quicker adjustment of the overall
system. However, the size of the buffer depends on the available memory of the com-
puting unit. In the case of the Raspberry Pi 4B used here, the optimal buffer size is
at approximately 6 frames. With a larger buffer, there is a risk of memory overflow,
leading to program crashes. For other models this value may vary accordingly.
Conveniently the image capture function provided by the Picamera2 module, returns
the image as a numpy-array, which can be directly used by the Moon detection software.

3.3 Moon Detection

Detecting the Moon in the captured image takes multiple processing steps.
Firstly, the image is transformed into the grey scale format, removing the color chan-
nels. This is the required format for the subsequent lunar detection algorithm and ad-
ditionally speeds up processing due to less amount of data being processed. Then a
median blur is applied to the image. This blur helps by removing noise from the image.
Depending on the resolution of the image, the kernel for applying the blur may need
to be resized. Tests have shown that a slight blur of around 4 pixels seems to bee the
sweet-spot in smoothing out the edge of the moon, leading to a more consistent target
detection. Too much blur introduces an uncertainty for the edge detection algorithm.
The entire process takes place within the preprocessing function, which takes the
original image as input, processes it based on the provided configuration, and then
outputs the processed image.

To do the image processing as well as the Moon detection the python module cv2
was used. The module cv2 is part of the OpenCV (Open Source Computer Vision
Library), a tool from the field of computer vision and image processing. This library
offers a wide array of functionalities for real-time image processing applications. One
of the prominent functions in cv2 is cv2.HoughCircles, which is a function for detect-
ing circular shapes in images. This function is ideal for applications like the Moon
guider system, where the primary objective is to identify the a circle in an image. The
cv2.HoughCircles function implements the Hough Circle Transform.
The function works by scanning the image for points that form a curve and mapping
them to potential circle centres in an accumulator space. When these mapped points

Page 15

Software

converge significantly, it indicates the presence of a circle.[5] While this is a very brief
explanation for method of this function, the details are beyond the scope of this term
paper.

Key parameters of cv2.HoughCircles include:

• dp: Inverse ratio of the accumulator resolution to the image resolution. Affects
the size of the accumulator array which is used for the processing. A lower value
results in a more precise detection but increases computation.

• minDist: The minimum distance between detected circle centers. Adjusting this
parameter prevents multiple detections of the same circle. For this application the
minimum distance was set to the width of the picture as only one circle per image
should be detected.

• param1: Threshold value for the canny()-edge detection, the function is used to
get the boundary of the circle.[6] Increasing this value helps with noise but may
not detect the Moon in low contrast situations like haze or clouds.

• param2: Accumulator threshold for the circle detection. This determines how
"circular" the circle needs to be for the function to detect the circle.[7] A high
value improves performance when the Moon is close to full but may lead to no
detection at new Moon.

• minRadius and maxRadius: Minimum and maximum radius of the detected circle.
Adjusting this to the current apparent Moon size can increase detection accuracy
and reduce false positives. In the code this is done by detecting the moon with
more liberal bounds first and then locking the radius by pressing the guider button.

After detecting the circle in the image, the function returns the x- and y-coordinate of
the center in the image as well as the radius. These parameters can then be used as
the target coordinates for the guider. Depending on the time of day and month, the
captured picture of the Moon can vary substantially. Due to varying brightness, clouds,
haze and especially different Moon phases, the HoughCircles-detection algorithm’s
performance will not be constant for the same set of parameters. For this reason,
different parameter profiles have been created to fit those situations best. An overview
is given in table 1–1 in the user manual. An extensive report on how these values were
chosen can be found in section 4.1.

A different approach to detection the Moon and specifically its deviation is to take two
pictures and look for differences between them. Using this technique a deviation vector
can be calculated. However this method was dismissed due to its high susceptibility
to haze and clouds. Moving cloud sheets can easily throw off the motion detection,
if they are big enough. Using the Hough-method the Moon can be detected even at
reasonable cloudy and hazy conditions with satisfactory precision.

Page 16

Software

3.4 Signal Output

To steer the guider in the right direction, a correction signal for the mount is required.
As mentioned earlier, the mount is already moving at lunar speed automatically, so the
entire movement doesn’t need to be guided manually. Slight deviations in the guider’s
alignment can lead to significant inconsistencies in the long-term. It is precisely these
deviations that the Moon guider aims to compensate for. Performing small course cor-
rections is done by sending short pulses of movement commands to the guider, as long
duration commands have proven to lead to unpredictable behaviour (see section 3.6).
After calculating the deviation of the Moon from the target position, the software first
checks if this deviation is inside the defined margin. If not, a signal will be sent to the
relay board. To make the steering input more sensitive, as the target is approached, the
length of the signal is dependent on the amount of deviation. The bigger the deviation,
the longer the signal, up to a maximum of three seconds. The signal length is calcu-
lated by multiplying the deviation in pixels times the pulse_multiplier, a value set by
the user. The optimal value of this parameter is dependent on the specific mount which
is used since not all mounts have the same amount of correction movement when us-
ing the ST-4 interface. In this specific case, using the Skywatcher Star Adventurer GTI,
a pulse_multiplier value of around 0,1 worked best.

3.5 Error Mitigation

Since the Moon Guider relies solely on visual feedback from the camera, the consis-
tency of the Moon detection is crucial. But some external influences can not be con-
trolled by the software. Clouds and fog are the main factors contributing to detection
errors. During an otherwise clear night, clouds or fog patches can frequently obscure
the view of the Moon for a certain period. During this time, the guider cannot locate
the Moon correctly, leading to a loss of precise tracking. However, the general direction
should be maintained to allow for resumption when the Moon becomes visible again.
Additionally, structures within illuminated clouds can be recognized by the software as
circles, leading to false positives. To address these situations, various mechanisms
have been developed.

3.5.1 Handling Clouds

In the program, two ways of handling clouds were implemented to choose from. This
setting can be addressed via the cloud_mode parameter. If no Moon is detected in the
image for five times in a row, the cloud mode is activated.

cloud_ mode = None
As soon as the cloud mode is activated, the guider is paused and remains inactive
until the Moon is detected again. The guiding then resumes automatically. As this is
the simplest form of cloud handling, it requires the least amount of computation. For
longer obstructions of view, the Moon guider will inevitably loose track of the target and
not be able to recover.
Using the viewing angle of the camera (on the RA axis) of 25600” (as measured by

Page 17

Software

Fig. 3–1: Illustration of the effect of a misaligned altitude axis during un-guided opera-
tion of the mount.

hand) together with the apparent speed of the Moon in the night sky of about 15” per
second, we can calculate that the Moon would take just over 14 minutes to leave the
view of the camera. This assumes that the Moon was at the center of the image at
t0, at which point the mount motors were to fully turned off. Now considering that the
mount’s RA movement continues even if no commands are sent to the ST-4 interface,
the only way for the guider to loose sight is due to a wrong alignment of the mount.
While the mount can be precisely set in the cardinal direction using a compass, the
altitude alignment of the guider is not so trivial. Uneven terrain and poor visibility can
quickly lead to deviations here. Assuming a small misalignment angle φ, this results in
a tilted RA axis. The misalignment now induces a deviation from the Moon in the DEC
direction by the sine of the misalignment angle between the RA of the mount and the
true RA of the Moon, which is illustrated in figure 3–1. For small deviations, this effect
is therefore minimal. It is safe to assume that for φ of a few degrees, the guider will be
able to regain the target after well over 14 minutes.

This behaviour has been confirmed during tests with the live Moon. Figure 3–2 shows
a plot of the x and y position of the Moon in the frame. The camera is aligned with the
RA and DEC axis due to the mount being oriented and therefore correspond to the x-
and y-axis of the picture respectively. During this test the camera is covered at around
110 seconds, which makes the guider switch to cloud mode. This was set to None in
the test so the guiding is inactive during this time. After 140 seconds of no relay activity
the cover is removed and the target is regained. The dashed lines show the linear
approximation of the drift during this time where only the native motion of the mount
guides the system. While the deviation of the x-axis (RA) shows close to not drift at all
during the inactive phase, the deviation in the y-direction (DEC) is rather significant at
about 55 pixels. The great difference in drift of the two axis is most likely due to the
effect described above and depicted in figure 3–1. At this amount of misalignment of
the mount, the guider would be unrecoverable after about one hour.

Page 18

Software

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

20

40

60

time (s)

de
vi

at
io

n
fro

m
ta

rg
et

(p
ix

el
s)

x-deviation
y-deviation

Fig. 3–2: Plot of the Moon position in the frame during a live test with cloud_mode =
None.

cloud_ mode = repeat
When the cloud mode is set to repeat, a history of relay activation signals is recorded.
The number of entries in this recording can be set via the record_buffer parameter.
When the target is lost, the relays execute this history until the target is back in sight. To
predict the movement of the Moon using this method, the assumption is made that the
Moon moves in a linear path uniformly across the night sky. Since the path describes
more of a sine wave, this approximation is only valid for limited periods.[8] Beyond a
certain duration of loss of contact, the guider will inevitably deviate from the path of
the Moon. However, for smaller cloud patches and fog banks, the corrections are still
sufficient.
Figure 3–3 shows this mode in action. In the test, similarly to the one performed
with cloud-mode None, the guider follows the live Moon for around 105 seconds when
the camera view is blocked. The guider then goes into repeat-mode until the cover
is removed at the 250 second mark. During this time the recorded pattern of 100
signal activations is repeated. Over the total of about 145 seconds the drift in the
x-direction (here RA) and y-direction (here DEC) only amount to around 2.5 and 15
pixels respectively, as indicated by the dashed lines. At this rate the Moon would slip
out of sight at the top of the frame after almost 3 hours, provided a centred Moon in the
beginning. Since the purpose usage of the guider presumes a clear night in the first
place, a cloud overhang of this duration should not occur. The precision is therefore
sufficient.

3.5.2 Other Error Mitigation Measures

Further measures have been taken to make lunar tracking as precise as possible. As
previously mentioned it is of utmost importance for the precision of the entire system,
that the visual lunar detection is as precise as possible. Even though the parameter

Page 19

Software

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
−5

0

5

10

15

20

25

time (s)

de
vi

at
io

n
fro

m
ta

rg
et

(p
ix

el
s)

x-deviation
y-deviation

Fig. 3–3: Plot of the Moon position in the frame during a test with repeat-mode.
record_buffer was set to 100 frames, at an average FPS of 1.7

study already provides the optimal settings for the HoughCircles-algorithm (see sec-
tion 4.1), slight fluctuations remain. These are attributable to air fluctuations, clouds,
camera noise and other influences. Even a tiny change is sufficient for the detection of
the Moon to be shifted by a few pixels.
To mitigate these fluctuations, a buffer and averaging function has been added to the
guider. This buffer, the length of which can be adjusted via the buffer_length parame-
ter in the program, collects the determined target positions. Instead of using the actual
target values from the current frame, the guider uses the average of the target buffer
for the lunar position. In this way, small fluctuations are compensated over time. It has
to be noted that this averaging results in a slight delay of the movement of the guider
to the actual Moon. The amount of this delay can be approximated by the following
formula, again assuming a linear static motion of the moon:

∆bu�er ≈
1

2
· buffer_length ·∆tframe · ωmoon (3–1)

Here ∆bu�er is the deviation of the system in arc seconds from the actual Moon, ωmoon
is the angular velocity of the apparent Moon in the sky in arc seconds per second and
∆tframe is the average calculation time it takes for a frame to be analysed in seconds.
While this averaging induces an offset of the guiding system lagging behind the Moon,
it ensures that the random jitter of the Moon detection is mostly cancelled out. To
account for the offset, the center reference point can be adjusted.

To further improve the detection quality of the Moon in the image, a reference Moon
radius can be set. While starting up, the minRadius and maxRadius are set to high
values. A video feed, including a visual marker of the detected Moon is then shown.
The user can then confirm the correct detection by pressing the button. This ensures

Page 20

Software

that only circles of the correct size are taken into account, further eliminating false
positives.

As clouds come in many shapes and sizes, sometimes they display ring- or circle-
like features which could falsely be picked up by the detection algorithm. To prevent
this from happening, the Moon guiding system features a threshold for identified circle
positions. Hence, circles which are more than 100 pixels away from the last known
target position are filtered out, as they are most likely false positives.

3.6 Challenges

During the development of the Moon Guider, several challenges had to be overcome.
The control of the mount proved to be non-trivial, in particular. The first approach to
steering the mount was by sending a continuous signal to move in a specific direction,
until the target was reached. This results in long duration signals, especially during the
initial target acquiring stage. During a first test, this approach was implemented and its
performance tracked by logging the x and y position of the target on the image. These
correspond to the RA and DEC axis of the guider respectively. Figure 3–4 shows the
deviation from the target in the x and y axes separately over time.

0 20 40 60 80 100 120 140 160 180 200
−60

−40

−20

0

20

40

60

time (s)

de
vi

at
io

n
fro

m
ta

rg
et

(p
ix

el
s)

x-deviation
y-deviation

Fig. 3–4: Plot of the error while guiding with continuous direction signals. Failure
occurs after 140 seconds.

As can be seen, the deviation from the target position slowly approaches zero and re-
mains in the vicinity, following the target as planned. However, after about 140 seconds,
the mount starts to deviate from the target in the negative y-direction, while the x-axis
continues to be relatively stable. This deviation in the y-direction was caused by the
DEC motor not activating any more, even though the corresponding relay had been
activated. Similar occurrences of this happening showed no clear pattern as to why
the steering of the guider stopped. The system started out with normal behaviour and

Page 21

Software

then the deviation in one axis started increasing at a seemingly random point in time,
sometimes taking 20 minutes.
Initially, the function of the relays was checked. Theoretically, stuck relays could be a
reason for the guider’s malfunction. As a first effort to free a possible sticky relay, a
new functionality was added to the guider’s software. It was able to detect a continu-
ous increasing deviation from the target and send a pulse to the corresponding relay in
order to free the mechanics. Surprisingly this method seemed to get the guider back
on track, which was shown by tests such as depicted in figure 3–5. Here the error ap-
pears two times. The guider then pulses the relays and the steering returns it back to
the target. Interestingly this did not seem to work consistently as can be seen from the
different maximum deviations for each error in figure 3–5. The software in this test was
set up to detect an increasing deviation after 20 steps of continuous divergence, which
corresponded to about 30 seconds. In the plot, it can be seen that the first deviation is
not corrected until about 60 seconds, when and the guider changes its direction. The
initial pulsing of the relays did not seem to have any effect. For the second deviation it
even took three attempts.

0 50 100 150 200 250 300 350 400 450 500 550 600 650

−80

−60

−40

−20

0

20

40

time (s)

de
vi

at
io

n
fro

m
ta

rg
et

(p
ix

el
s)

x-deviation
y-deviation

Fig. 3–5: Plot of the same error. The software recognizes malfunction and pulses relay
to free up sticky mechanics.

Further investigating this issue, the exact cause had to be identified, as it could still be
an issue with the mount as well as the guider. To rule out a sticky relay, additional relay
boards from a different manufacturer were connected to the system and tested but the
same error was observed. This indicated that the error was most likely to be caused
by the mount itself.
After researching and writing with the manufacturer of the mount, it became apparent
that the length of the signal seemed to be the problem. Some mounts only expect short
correction signals and may be confused by the long duration signals, which were sent
by the guiding system. However, since the software did not allow for parallel execution

Page 22

Software

of various tasks, the minimum pulse time was bound by the speed of data processing.
The shortest possible signal was therefore initially limited to about 0.8 seconds, which
was the time it took for the guiding system to compute the Moon location in one frame.

One way to activate the relays in parallel with image processing is through threading.
Threading in Python allows multiple instances of a program to be created, which can
then be executed simultaneously. Since the activation of the relays, aside from the
actual control signal, mainly consists of waiting time, this technique can also be handled
well with the limited performance of the Raspberry Pi. The software was then rewritten
from activating the relays between the frames to pulsing the relays for a specific amount
of time. This allows the steering signal to be arbitrarily short. The signal length is now
determined by the magnitude of the deviation in the corresponding axis in pixels times a
multiplier pulse_multiplier. Scaling the duration of the signal ensures a softer, more
precise steering in close proximity to the target, while allowing fast movement during
initial target acquiring. While reworking the code, the efficiency was also improved to
around 0.6 seconds per frame which makes the software much more responsive.
When testing the new relay_handling, the error does not occur any more. Various
tests over long durations of time have not shown any unexpected behaviour by the
mount. For more detailed information about the tests see chapter 5.
Possibly the internal control of the mount did not expect long duration signals and
turned the motor steering off, misinterpreting the signal as an error. However this
theory has not been confirmed with certainty due to a lack of clarifying information
from the manufacturer.

Page 23

Software

Page 24

Testing and Development

4 Testing and Development

Due to its orbit around the Earth, the Moon spends about half of the month during
daylight hours and the other half at night. To test the system optimally, a clear night
and unobstructed view of the Moon are required. These limitations make the rapid
development of the Moon guiding system challenging. A simulation environment had
to be found.
For this, the testing was split into two parts: Moon detection and relay actuation and
steering. These two functions could initially be tested and developed independently
from each other, before integrating them into a joined system.

4.1 Moon Detection

As previously discussed, the precision of the guider depends heavily on the choice of
parameters for the HoughCircles algorithm. Finding the best values for these param-
eters is not trivial, since they all depend on each other as well as the picture which the
algorithm is analysing. To find the best combinations a grid search is deployed. This
is a search technique normally used for hyper-parameter tuning in machine learning
models. It is an exhaustive search in which a list of possible values is defined for each
of the parameters in question. The algorithm then checks every single combination
and tracks their performances. This way the best performing combination of parame-
ters can be found.
In the context of Moon detection a grid search concerning the parameters blur, dp,
param1 and param2 is deployed. Each combination is then given a stack of 15 images
of the Moon. The process is then repeated to find the parameters for the other Moon
phases.
The images are generated by taking an original image, captured by the Raspberry Pi
Camera, and augmenting it by varying brightness, contrast and noise. This ensures
that the position of the Moon is the same in every picture of a given set, while gener-
alizing the test for different conditions. Over each combination of parameters and set
of Moon images the values of the Moon coordinates and radius are logged. The best
performing combination can then be found by choosing the one with the least amount
of deviation between the detected values per set. If two or more combinations have the
same performance, the one with the lowest computation time is chosen. The results,
which are published in table 1–1, are recommended benchmark values which can be
used with the Moon Guider system. For more detailed results of the grid search con-
sult the excel-files associated with this paper or visit the GitHub. Due to the size of the
tables, they have not been included in this report.

4.2 Relay Actuation and Steering

For the development of the relay actuation and steering function, the Mount is initially
fitted with a laser pointer and pointed towards a wall. The relays for the corresponding
mount axes are then actuated one by one. By tracing movement of the laser, the

Page 25

Testing and Development

movement of the mount can be detected. Figure 4–1 shows a picture of the connection
from the Raspberry Pi to the ST-4 interface in these early tests. Here the white wiring
is the common pin (ground) and the coloured wires are corresponding to the directions
of motion.

Fig. 4–1: Set-up for testing purposes: top-left: Raspberry Pi; middle: Relay board; top-
right: Debug connector to ST-4 interface

After the connection to the mount is confirmed to work as intended, the camera is
added to the system. Since now the target can be located and logged, this provides
a more detailed look into the ongoing movements. To measure this with maximum
accuracy, the target detection must be as consistent as possible. Therefore, optimal
conditions are created for the circle detection. As a test set-up, a white paper circle
with the correct size is placed into the camera view. If the correct target is found, the
mount is shifted such that it has to move back to the target by actuating the motors.
The data collected from these kinds of tests, provided insight into the reaction of the
mount to the input signals, that lead to the discovery of the continuous signal problem
which is discussed in 3.6.
Figures 4–2 and 4–3 show pictures of the system as well as the display output during
this test respectively. The single components are held in place using rubber bands and
anti-ESD (electro-static discharge) film as it is not yet assembled.
In later iterations the Moon Guider is tested with moving targets. To do this at times
where the Moon is not available, a screen is placed 2 meters in front of the guider
and the mount is aligned accordingly. This was done by using a smartphone, running
star-gazing application. Utilizing the gyro-sensors of the phone, the mount was roughly
pointed into the direction of north star. A video is then played on the screen, depicting
an animated white disk on a black background. With the disk being exactly the right
size and movement speed as the real Moon, all of the functionalities of the Moon guider
can be tested in the simulation environment.

Page 26

Testing and Development

Fig. 4–2: Picture system as it was used
for testing, mounted on the telescope
stand

Fig. 4–3: Picture of the display output of
an early system test. In the view is a wall
with a white paper circle attached to it so
Simulate the Moon

4.3 Integrated System

With both of the sub-functions working, full system tests can be executed. The guiding
precision is evaluated by measuring the maximum range of the deviation over a fixed
period of time. The lower this range, the better the guider is able to hold the target
in the desired position. The tests show that the guider enters a control feedback loop
when staying close to the target. This leads the guider to oscillate over the target
position. This oscillation heavily depends on the buffer_length parameter, as was
tested in the experiment depicted in figure 3–1 in appendix C.4. Here the simulated
moving target was tracked two times with for the same configurations, except for a
different buffer_size parameter. During the time the deviation from the target was
logged. For simplicity, only the deviation on the x-axis is depicted here, however the
y-axis deviation looks very similar. A bigger buffer clearly dampens the oscillations of
the guider significantly while also lowering the frequency.
The pulse_multiplier also changes the behaviour of the guiding. It changes the
duration of the computed steering signal. This can lead to overshooting the target, ad
a too strong steering motion is applied. An example of this is shown in appendix C.4,
figure 3–2, where the same test is done twice, again in the simulation environment,
only changing the multiplier. After many tests, a pulse_multiplier of 0.1 proved to
be the best fit. However this value might change for different models of mounts as they
might vary in their steering magnitudes.
The margin parameter did not seem to have a significant effect, except for a shifted
pointing center in some cases.
To monitor the guider’s performance during these tests, the option to log the resulting
data and export it to an excel-file was added. This feature is still operational and can
be used to review the guider performance after operation.

Page 27

Testing and Development

Page 28

Results

5 Results

In the simulation environment as well as the live Moon, the guider has been tested
extensively. It has been proven to be reliable under real conditions within a margin of a
few pixels of deviation from the target.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
−5

0

5

10

15

time (s)

de
vi

at
io

n
fro

m
ta

rg
et

(p
ix

el
s)

x-deviation
y-deviation

Fig. 5–1: Plot of the a successful guiding test with the live Moon. buffer_length = 20;
pulse_multiplier = 0.1

Figure 5–1 shows the plot of a test performed on the live Moon. As can be seen, the
deviations fluctuate up and down throughout the test. An oscillation occurs at times,
where the guider corrects and then overshoots the target. Since this overshooting is
within a range of a few pixels, it is acceptable for the application. It has to be kept
in mind that this deviation refers to the position of the Moon calculated by the guider.
As a result, it is subject to constant minor fluctuations in detection that the Moon does
not actually have. In reality, the deviation is smoothed out. It is noticeable that the y-
deviation does not approach the zero point but oscillates at about 5 pixels of deviation.
Depending on how it is positioned, the induced deviation from one of the axis due to
misalignment of the mount may be stronger. Since the length of the steering signal
for both axes scales equally, one axis might not catch up. In this case it it the y-axis.
However, this can be easily corrected for later use by resetting the reference point.
To check for any malfunctions that might only appear after long durations of time, the
guider has been tested for up to one hour. The behaviour of the target guiding seems
to coincide with the short duration tests. As can be seen in figure 5–2, the Moon is kept
within a corridor of about ±2.5 pixels in either direction. Additionally, the long duration
test indicates that the guider does not drift off on one axis. Although oscillating around
the target, the guider keeps the Moon in the desired area.

Page 29

Results

600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400
−5

0

5

10

15

time (s)

de
vi

at
io

n
fro

m
ta

rg
et

(p
ix

el
s)

x-deviation
y-deviation

Fig. 5–2: Extract of a plot of a 50 minute test during half Moon in a clear night.

5.1 Discussion

Apparently the time delay between the steering signal and target deviation change in
combination with the generally slow reaction of the ST-4 steering creates a feedback
loop in the guider. This feedback loop than leads to oscillations around the desired
location. It is possible that these oscillations can be overcome by designing the relay
activation function in a different way or by adding a dampening component to it. How-
ever in the scope of this thesis, this simple approach was deemed sufficient. Because
the response to a steering signal strongly depends on the model of the mount, com-
plicated control loops might not generalize well to other models. In a project, which
should be usable with many different hardware set-ups, simplicity is key.
The tests have shown that the guider performs well in a variety of different conditions.
This includes various moon phases, as well as cloudy and varying lighting conditions.
Since not every phase of the Moon could be tested in reality (in part due to the cloudy
weather during the German winter), simulations had to be utilized. These simulations
were used to find the appropriate parameters for the design of the system. In the condi-
tions tested live so far, the guider was able to achieve equally good performance using
these parameters. However, in systems that process data from the outside, there can
always be discrepancies between the simulation environment and the chaotic environ-
ment of the real world. These discrepancies can be approximated as closely as pos-
sible within a simulation but can never be completely ruled out with absolute certainty.
Because of this the performance of the guider will always be subject to unexpected
environmental conditions to some degree.

Page 30

Conclusion and Outlook

6 Conclusion and Outlook

The system developed during this term paper is capable of guiding a standard motor-
ized telescope mount to follow the movement of the Moon in the night sky for extended
periods of time. A sufficient target holding precision to guide the mount for capturing im-
pact flashed of the Moon has been demonstrated. The software is adaptable to various
sky- and Moon-conditions as well as different hardware set-ups and can be configured
and changed by the user. Extensive documentation on the software and hardware is
provided to make the application more simple and user friendly. Furthermore the guid-
ing system archived its goal of utilizing COTS-components as well as commercially
available astronomy gear. When the system is adopted by more people, more data
will be gathered about the performance of the Moon guider. Although any models of
telescope mount equipped with a ST-4 interface should be able to use the guider in
theory, it is yet to be tested and confirmed. As is often the case with open-source and
community projects, they will continue to grow and adapt to new conclusions.

Further work on the Moon guider software could include a more advanced control
loop for the steering corrections. To archive maximum guiding precision a predictive
controller may be effective. Improvements of the user interface could also be made, to
eliminate the need for a keyboard altogether.

Page 31

Conclusion and Outlook

Page 32

Bibliography

Bibliography
[1] BerryBase, “Raspberry pi high quality kamera.”

[2] F. Momeni, H. Papei, R. Jamshidzadeh, S. Bereliani, A. Miri, A. Aghababaei,
N. Nikjoo, E. Mehdizadehi, M. Akbari Gurabi, and N. Ghasabi Kondelaji, “Deter-
mination of the sun’s and the moon’s sizes and distances: Revisiting aristarchus’
method,” American Journal of Physics, vol. 85, no. 3, pp. 207–215, 2017.

[3] SBIG, “St-4 manual.”

[4] BerryBase, “3,5" display für raspberry pi mit resistivem touchscreen.”

[5] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of hough
transform methods for circle finding,” Image and Vision Computing, vol. 8, no. 1, pp.
71–77, 1990.

[6] W. Rong, Z. Li, W. Zhang, and L. Sun, “An improved canny edge detection algo-
rithm,” in 2014 IEEE International Conference on Mechatronics and Automation.
IEEE, 2014, pp. 577–582.

[7] V. K. Yadav, S. Batham, A. K. Acharya, and R. Paul, “Approach to accurate circle
detection: Circular hough transform and local maxima concept,” in 2014 Interna-
tional Conference on Electronics and Communication Systems (ICECS). IEEE,
2014, pp. 1–5.

[8] R. A. Garfinkle, Ed., Luna Cognita. New York, NY: Springer New York, 2020.

Page 33

Bibliography

Page 34

User Manual

A User Manual

The code was developed to guide a standard commercial telescope mount through a
ST-4 port to follow the Moon using a Raspberry Pi (4B), a camera and a relay board.
The system should work with any version of Raspberry Pi running Raspberry Pi OS as
long as the other components are compatible. Due to computing demand a version 4
or higher is recommended.
The relay card can be any 4 channel relay card compatible with the Raspberry Pi. For
this project a opto-isolator relay card was used but other relays will also work. Any
camera compatible with the Raspberry Pi will work as long as the video stream can
be called with Picam2. To archive a reasonable precision the sensor and lens should
provide for a sufficient resolution of the Moon. At least 100 pixels per Moon diameter
are recommended. The other components can be chosen freely.

Fig. 1–1: Picture of the completed Moon
guider assembly

For the original project, as shown in figure
1–1, these components were used:

• Raspberry Pi 4B

• Raspberry
Pi High Quality Camera (C-Mount)

• sertronics 50mm Lens (C-Mount)

• sertronics
RELM-4 4 Channel Relay Module

• waveshare
3.5 inch RPi LCD (A) Display

• Innomaker aluminium case

• Steel Button

• GPIO extension

• Dupont connector cables

• Standard RJ12 cable

• Standard camera screws

A.1 Installation

On your Raspberry Pi running Raspberry Pi OS, do a update/upgrade and install the
latest version of git (if not installed already):
sudo apt install git

Page 35

User Manual

Then get the MoonGuider repo from github:
git clone https://github.com/tobiasKurz1/MoonGuider.git

Navigate to the download folder and install use the requirements file to install the nec-
essary libraries:
cd MoonGuider
pip3 install -r requirements.txt

Adjust the configuration parameters by editing the config.ini:
nano config.ini

The program can be run by executing the main file:
python3 main.py

A.2 Usage

The system is designed to be easy to use and self explanatory. Also the code is
modular and comprehensive to allow for changes and adjustments to changing cir-
cumstances. Use the config.ini to configure the system with different parameters.
The configuration file includes settings for the Moon phases full, half and new Moon
but custom profiles can be added. The parameters are explained at the top of the file.
The most important parameters for first launch include pin_ra_down, pin_ra_up,
pin_dec_down, pin_dec_up, pin_button (depending on the wiring) as well as
image_height and image_width (depending on the camera resolution). The pins may
need to be adjusted based on the specific wiring. The numbers can be looked up in the
Raspberry Pi documentation. When starting up and closing, a keyboard is required.
While the program is running it can be controlled via the button only.
For additional functionality of the code show_cam_feed, do_relay_test and
export_to_excel can be toggled on or off.

show_cam_feed: Opens a window displaying the current camera output at a high
frame rate. This is used to initially align the camera and the mount while searching
for the target. Can be terminated by pressing a key or the button.

do_relay_test: Can be used to test the correct wiring of the system. When activated
a screen will show up, showing the current target detection. If the correct target (Moon)
is detected and shown in on the screen, press the button. The system will then send
five 2-second pulses to each relay, displaying the change in target position on the x-
and y-Axis. This test should be performed with a realistic moving target (ideally the
Moon), with the mount set to lunar velocity guiding. For a precise result the Mount
should be aligned as precise as possible.

Page 36

User Manual

export_to_excel: Saves the logged activity of the Moon guider system. This in-
cludes target position, radius and deviation, the timing and durations of the steering
signals as well as the configuration profile. The excel sheet can will be saved in the
program folder under /Logs.

Running the Code
When the main file is executed, the config.ini is read. The user must then select a
profile using the keyboard (if only one profile is present, it will be selected automati-
cally). Next, the clicking of each relay should be heard. If there are fewer than four on
and off clicks, the relay board is not working correctly. After that, the above-mentioned
functions for camera setup and testing are executed if activated.
Before the guiding begins, the user can set a current Moon radius. When the prompt
shows up, press the button to lock in the current moon radius and the press again to
confirm. If the process is skipped by pressing a key, the restrictions on possible de-
tected circles are set very loose.
The guider will now steer the mount to follow the moon within a small margin of error.
On default the system will try to put the Moon in the center of the frame. If the button
is pressed, the desired position will be set as the current position if the Moon. Hold the
button for 2 seconds to reset it to the center. Hold the button for 5 seconds to exit the
program.
Log files can be visualized using the included plotter.py, which outputs an image to
the /Logs folder.

Fig. 1–2: Info screen of the Moon guider during operation

Figure 1–2 shows the display of the Moon guider during operation. The straight red
lines show the reference position in the image, while the red circle marks the position
of the Moon. Here the overlay is turned on, displaying information about the current

Page 37

User Manual

state. In the first line the target position and deviation from the reference point in
pixels are displayed. Below the frames per second and the active relays are shown.
Next to this is the current guiding mode. This switches between Active, Inactive and
Repeat, depending on the cloud_mode setting and whether the target is locked or not.
In the bottommost line, it is firstly displayed how many valid positions are stored in
the buffer, from which the average value for the target is calculated. Here, you can
track whether the Moon is detected in each iteration. The next value EA stands for
error_accumulator. This internal variable counts consecutive frames in which the
Moon is not detected. When the EA is full (set to 5 here), the guider switches to cloud-
mode. Finally, in the bottom right corner, the elapsed time in seconds is indicated.

Preconfigured Moon Profiles
As a reference these parameters are recommendations for various guiding conditions:

Tab. 1–1: Recommended parameters for the Moon guider, depending on the conditions

Parameter New Moon Half Moon Full Moon

Reference
picture

blur 6 5 4

dp 2 2 2

param1 300 300 200

param2 10 50 100

Page 38

User Manual

A.3 Troubleshooting

Custom Hardware
Hardware other the parts listed above can be used for this system. Here are some
configuration changes and considerations which need to be made when running the
code with a change in the respective component:

Computing Unit: A lower computing power may lead to very slow response times
and low frame rate. To compensate for this, parameters like
image_buffer and in_scale can be set to lower values. It may
also help to raise dp. However all of there changes may impact
guiding precision.

Switching Unit: In the original system the inactive relay position is GPIO.HIGH. If
this is not the case the HIGH and LOW may need to be switched
in the code inside relay_handling.py. In the case of standard
three way relays the order of the wiring can also be changed
to accomplish the same result without changing the code. Pins
used for the connection of the relay board need to be specified
in config.ini.

Camera: Adjust image width and height in config.ini. Change in res-
olution results in changed computing power requirements. Ad-
just these parameters to fit for your system (see above). Also
margin and pulse_multiplier may be adjusted since they are
dependent on the deviation in pixels. Depending on how the
camera is oriented on the telescope Mount, adjust rotate in
the configurations.

Lens: Different lenses lead to changes in Moon size on the sensor.
Therefore margin and pulse_multiplier may need to be ad-
justed.

Display: Different screen sizes are usually not a problem as long as they
are seamlessly integrated into the OS. Displays which require
python libraries to be operated will need to be custom coded in
calc.py. To improve image quality on higher resolution displays
increase out_scale.

Mount: For the development of this system the Skywatcher Star Adven-
turer GTI was used as a telescope mount. As different mounts
may guide with different speeds the pulse_multiplier needs
be adjusted accordingly.

Button: The system is designed to include a button, whose pin needs
to be specified in config.ini. If no button is connected, the
system can still be entirely operated by using the keyboard.

Page 39

User Manual

Page 40

Hardware

B Hardware

Fig. 2–1: Close-up image of the relay board including the wires for steering the mount.
The colors are: black→ ground; blue→ -RA; yellow→ -DEC; green→ +DEC; red→ +RA

Fig. 2–2: Picture of the assembled bottom plate with covered camera screw and spacer
screws attached

Page 41

Hardware

Fig. 2–3: Picture of the assembly after adding the button, GPIO extension, screw and
RJ12 cable

Fig. 2–4: Picture of the assembly after adding the relay board and the wire connections

Page 42

Hardware

Fig. 2–5: Picture of the Moon guider with the relay board fully assembled

Page 43

Hardware

Page 44

Software Overview

Page 45

Software Overview

C Software Overview

C.1 Files

Tab. 3–1: Overview of the main files needed to run the Moon Guider with full potential
(top) and auxiliary files, which were used for testing and developing (bottom)

File Description

main.py Main execution file to run the Moon Guider. Incorporates all of
the functions directly or indirectly via the other files. Features
options for setting up the guider, configuring and testing.

calc.py Carries out the image processing, circle detection and
deviation calculation. Handles the visual overlay as well as
logging, buffering and exporting of values.

relay_handling.py Initializes and handles the actuation of the relay board during
normal operation as well as cloud obstruction, calculates the
required signals

config_loader.py Loads the config.ini file from memory and carries out the
configuration profile handling as well as the distribution of the
parameters.

config.ini Main configuration file for the Moon Guider. Takes in multiple
configuration profiles, which can be selected during start-up.
Incorporates default profile as a fall-back option. Guidance
and instruction on parameter selection can be found here.

plotter.py Used to plot Moon Guider behaviour from Excel log-files.

relay_test.py Gives options for relay activation. Is used to check
connections and whether relay board is operating correctly.

capture.py Used to capture and save arbitrary amount of high resolution
images with the Raspberry Pi camera.

main_testing.py Similar to main file but instead of taking camera images,
existing images are used from memory. Was used to test
initial main file and functions in predetermined environment.

movement_test.py Activates directions in relay one by one while tracking and
logging the target position. Was used to develop steering
signal generator. For more details see section 3.6.

relay_conti.py First version of signal output generator. Outputs a continuous
signal instead of pulses and features a detection function for
sticky relays. Function is discussed in section 3.6. Might be
useful for some versions of mounts.

gridsearch.py Performs grid search for HoughCircles parameters on folder
of input images and outputs Excel file with results.

Page 46

Software Overview

C.2 Classes

Tab. 3–2: Initializations for classes inside the Moon guider

Nr. Class Name File Input

(1) configuration config_loader.py config.ini

(2) calculation calc.py configuration-class

(3) log calc.py configuration-class

(4) buffer calc.py buffer_length

(5) guide relay_handling.py configuration-class; log-class

(1) Reads in the config.ini file from memory and checks for configuration profiles. If
only one profile is found, it is chosen. Otherwise the user is prompted to choose the
profile from a list. Then the contents of the profile are turned into the right data types
and initialized as attributes of the configuration-class.
(2) Initializes attributes for later image processing from the configuration parameters.
(3) Creates a dictionary to store the data logs and fills in the configuration parameters
from the configuration-class.
(4) Creates a dictionary to store the buffered values and initializes parameters from the
configuration.
(5) Initializes attributes from the configuration parameters and creates locks and threads
for the relay activation. If a rotation is set in the configuration, the order of the relay pins
will be switched accordingly. Initializes the Raspberry Pi GPIO and then pulses every
relay once.

C.3 Functions

Tab. 3–3: Functions for running the Moon guider

Nr. Name Input Output

(1) perform_relay_test - -

(2) lock_moon_size - -

(3) setup Picam2-instance -

(4) preprocessing calculation-class;
image

image

(5) targetmarkers calculation-class;
target position and
radius; reference
position, deviation,
image, hand-over string

image

Continued on next page

Page 47

Software Overview

Table 3–3 continued from previous page

Nr. Name Input Output

(6) moonposition calculation-class;
image

target position and radius

(7) get_deviation calculation-class;
target position; reference
position

deviation

(8) add log-class; sheet name;
data

-

(9) export log-class excel file

(10) errorcheck buffer-class; key -

(11) get_valid buffer-class; key string

(12) add buffer-class; value; key -

(13) average buffer-class; key average of stored values

(14) clear_all buffer-class -

(15) to guide-class; deviation -

(16) cloud_handling guide-class deviation

(17) record guide-class -

(18) activate_ra guide-class -

(19) activate_dec guide-class -

(20) switch_pin_on guide-class; direction -

(21) switch_pin_off guide-class; direction -

(22) button_is_pressed guide-class boolean

(23) pulse guide-class; pin; count;
up-time; down-time

-

(24) showactive guide-class active pins and guide
mode

(25) stop guide-class -

(1) Outputs the image of the camera to the display, marking a detected target. The
user then needs to confirm that the correct target is found by pressing the button. The
function not iterates over the relay pins, activating them in pulses. After each pin the
target location is checked again and the deviation is printed to the console. It is useful
to identify, weather the wires to the relays are connected correctly. Ideally it should be
performed on a stationary target, with the mount’s sidereal tracking turned off. When
the mount is aligned precisely it can also be performed on the live Moon. However any
misalignment may skew the results.
(2) Outputs the image of the camera to the display, marking a detected target. The

Page 48

Software Overview

user can confirm the detected Moon size by using the button. When it is pressed the
user has to confirm the selection within 5 seconds or else the selection will be aborted.
The Moon maximum and minimum radii will then be set to the selected size ±5 pixels.
(3) Current camera images are streamed to the display in high refresh rate mode. This
can be helpful for setting up the guider and finding the Moon. Can be terminated by
pressing a key or the button.
(4) Applies grey scale filter and blur to the image.
(5) Adds all the informational overlays to the camera images and resizes the out-
put if specified. This includes: target markings, reference point markings, deviation
arrow, white information bar overlay. Additionally to the target location and devia-
tion, the information bar outputs any text that is specified in the function input as the
handover_value. The information bar automatically jumps to the top of the image if it
would obstruct the view of the target.
(6) Applies the HoughCirlces circle detection to the image. If more that one circle is
detected, the occurance is printed to the console and the largest circle is chosen.
(7) Computes the deviation between two points per axis in pixels.
(8) Adds data to the specified sheet in the logs dictionary.
(9) Creates a log file in .xlsx-format and writes all the gathered data to it. The user is
prompted to name the file or can use the default naming convention by pressing enter.
Entering "no" or likewise will skip the saving of the file. After naming the user can enter
a note, which will be added to the "Configuration" sheet of the file. The file will be saved
in the /Logs folder in the main directory.
(10) Checks if a correct buffer name is referenced.
(11) Counts the number of stored values in a given buffer. Returns a string in the format
"[number of values] / [size of buffer]".
(12) Adds a value to a given buffer. If the buffer size is exhausted, the oldest item will
be removed.
(13) Returns the average of all valid data points in the buffer.
(14) Clears the value buffers.
(15) Main function for guiding the mount, given a deviation. Will check if the target
is found and initiate cloud_handling if necessary. Starts threads for steering the two
axis, if they are not already running. Records valid deviations for repeating in cloud
mode.
(16) Checks, which cloud mode is active and returns the corresponding substitute de-
viation. If the mode is None, the deviation will be set to 0, deactivating the relays. On
repeat mode the function will iterate over the recorded deviations by setting the inter-
nal deviation value to the corresponding record. The other functions will then interpret
the deviation as normal, making it repeat the exact activation pattern.
(17) Stores the deviations in a list and pops the oldest item if the length of record_buffer
is reached.
(18) and (19) Main functions for interpreting the deviation as a correction signal for the
respective axes. Checks for deviation within margin and calculates signal length based
on the deviation and pulse_multiplier. The functions for switching the pins on and
off will be called. Activity is communicated through the active attribute and logged
with a time-stamp. Will always be executed as threads.

Page 49

Software Overview

(20) Activates pins based on a list of booleans. The directions are mapped to the order
of the booleans as follows: [Right, Left, Down, Up] or, with the original set-up in the
northern hemisphere [-RA, +RA, -DEC, +DEC].
(21) Same as switch_pin_on but deactivates pins.
(22) Returns True if the button is pressed.
(23) Pulses a specified relay pin for a given amount of times.
(24) Returns a list of strings of the activated relays and the current guiding mode. Is
used for the information bar.
(25) Joins the relay activation threads, turns off any remaining relays and releases the
Raspberry Pi GPIO.

Page 50

Software Overview

C.4 Test Results

500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800
−5

0

5

10

15

20

time (s)

x-
de

vi
at

io
n

fro
m

ta
rg

et
(p

ix
el

s)

buffer_size = 7
buffer_size = 40

Fig. 3–1: Plot of two tests with different buffer sizes but otherwise the same settings

60 80 100 120 140 160 180 200 220 240 260 280 300
−10

−5

0

5

10

15

time (s)

x-
de

vi
at

io
n

fro
m

ta
rg

et
(p

ix
el

s)

pulse_multiplier = 0.4
pulse_multiplier = 0.1

Fig. 3–2: Plot of two tests with different pulse multipliers but otherwise the same set-
tings

Page 51

Software Overview

Page 52

	Introduction
	Hardware
	Requirements
	System Overview
	Computing Unit
	Camera and Lens
	Switching Unit and Wiring
	Display
	Case
	Hardware Integration and Preparation
	Assembly

	Software
	Software Architecture
	Camera Feed Integration
	Moon Detection
	Signal Output
	Error Mitigation
	Handling Clouds
	Other Error Mitigation Measures

	Challenges

	Testing and Development
	Moon Detection
	Relay Actuation and Steering
	Integrated System

	Results
	Discussion

	Conclusion and Outlook
	Bibliography
	User Manual
	Installation
	Usage
	Troubleshooting

	Hardware
	Software Overview
	Files
	Classes
	Functions
	Test Results

