Isabelle Tingzon

Room:  02.9377.246 (AI4EO)
E-mail: isabelle.tingzon(tum).de
More information:

Google Scholar




Curriculum Vitae

  • Since 08.2022: Beyond Fellow, AI4EO Future Lab, TUM
  • 03.2018 - 07.2022: Machine Learning Researcher, Thinking Machines Data Science
  • 08.2015 - 02.2018: Research Fellow II, Philippine-California Advanced Research Institutes
  • 08.2015 - 01.2018: M.S. Computer Science, University of the Philippines Diliman
  • 06.2011 - 06.2015: B.S. Computer Science, University of the Philippines Diliman

Research Interests

  • Computer Vision
  • Geospatial Data Analysis
  • Remote Sensing and Earth Observation
  • Machine Learning for the Developing World

Key Publications

  • Fatehkia, M., Tingzon, I., Orden, A., Sy, S., Sekara, V., Garcia-Herranz, M., & Weber, I. (2020). Mapping socioeconomic indicators using social media advertising data. EPJ Data Science9(1), 22.
  • Ledesma, C., Garonita, O. L., Flores, L. J., Tingzon, I., & Dalisay, D. (2020). Interpretable poverty mapping using social media data, satellite images, and geospatial information. In the Machine Learning for the Developing World (ML4D) NeurIPS 2020 Workshop.
  • Tingzon, I., Dejito, N., Flores, R. A., De Guzman, R., Carvajal, L., Erazo, K. Z., ... & Ghani, R. (2020, September). Mapping New Informal Settlements using Machine Learning and Time Series Satellite Images: An Application in the Venezuelan Migration Crisis. In 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G) (pp. 198-203). IEEE.
  • Tingzon, I., Orden, A., Go, K. T., Sy, S., Sekara, V., Weber, I., ... & Kim, D. (2019). Mapping poverty in the Philippines using machine learning, satellite imagery, and crowd-sourced geospatial information. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.